

Japan-Taiwan Nuclear Symposium SESSION **2**

Masanori Ishii Senior Network, AESJ 2008/12/20 SNM

2 ND MEETING BETWEEN AESJ-SNW AND TAIWAN-NIC , 2008.12.20. AT NTHU

CONTENTS

Part 1 Nuclear Prospect (1) Introduction

- 1. Background of Energy Policy
- 2. Energy Policy

Part 2 Nuclear Prospect (2)

- 3. Scenario of Recycle Option
- 4. Processing and Disposal of Radioactive Waste

INTRODUCTION

- Activities of SNW concerning energy and global warming issues
 - Studied through lecture by and discussion with expert in such areas as;
 - Energy policy issue, prospects of greenhouse gases (GHG) reduction, possibility of increasing renewable resources, etc
- Proposal submitted to Prime Minister Fukuda at the time
 - Goal and way to increase dependency on domestic energy including nuclear and to reduce GHG.

1.1 Energy Resources

1.2 Global Warming

2 ND MEETING BETWEEN AESJ-SNW AND TAIWAN-NIC , 2008.12.20. AT NTHU

1.1 Energy Resources

World Trend

- War to get resources started !!
 - Resources exhausting (oil peak), uneven distribution, demand increasing rapidly

Japanese Interest

- Energy security
 - assurance of supply, increase dependency on domestic energies

2 ND MEETING BETWEEN AESJ-SNW AND TAIWAN-NIC , 2008.12.20. AT NTHU

OIL PEAK

Peak of discovery of oil was 1960's.

Peak of production of oil and gas pass soon.

MI081220

Dependence on Imported Energy Sources by Major Countries

ENERGY BALANCES OF NON-OECD COUNTRIES 2004-2005

2 ND MEETING BETWEEN AESJ-SNW AND TAIWAN-NIC , 2008.12.20. AT NTHU

1.2 Global Warming Issue

Causes of Global Warming

- Most of observed increase in averaged temperature is very likely due to the observed increase in anthropogenic GHG concentration. (IPCC 4th Assessment Report)
- However, another assumption indicates natural fluctuation would be dominant. (Prof. Akasofu, etc.)

Mitigation of global warming:

Considering above causes, no regret option should be adopted to mitigate global warming by reducing GHG.

2 ND MEETING BETWEEN AESJ-SNW AND TAIWAN-NIC , 2008.12.20. AT NTHU

Changes in CO₂ Emissions from Fossil Fuels and Atmospheric CO₂ Concentration

(Note) Figures do not necessarily total to 100% due to rounded numbers. (Source) Carbon Dioxide Information Analysis Center (CDIAC, ORNL) website

IPCC 4th Assessment Report

Most of observed increase in averaged temperature is very likely due to the observed increase in anthropogenic GHG concentration.

Global and Continental Temperature Change

Magnitude of Natural Variation on Fluctuation

11

Temperature estimated from annual ring. Ice age recover from around 1800.

Global and Arctic temperature change. Increase of CO2 from around 1945.

- Little ice age recovering now.
- Temperature rising linearly from 1880.
- Temperature fluctuation during 1920-1970 seems to be independent from CO2.
- Warming during 1950-2000 in Arctic is distinguished..
- Contribution of CO2 for warming from 1900 would be around 1/6.

(Reference : Prof Akasofu)

MI081220

Kyoto Protocol Targets and Current State of Greenhouse Gas Emissions

⁽Note) Numerical reduction target is not set for developing countries such as China, India and Brazil. (Source) Institute for Global Environmental Strategies

Policy to Mitigate Global Warming

Cause of warming not known completely Natural fluctuation: solar, volcano, atmosphere, etc. Anthropogenic : GHG, land use, etc. Mitigation principle GHG emission mitigation is necessary even if; Natural fluctuation >>anthropogenic effect No regret principle should be adopted for

2 ND MEETING BETWEEN AESJ-SNW AND TAIWAN-NIC , 2008.12.20. AT NTHU

2 Energy Policy

- 2.1 World Trend
- **2.2 Japanese Policy and Prospect**

2.1 World Trend

- Resource and global warming issues should be resolved simultaneously with maintaining economic growth.
- Adjustment of national interest, equality between developed and developing countries is difficult.
 - Hokkaido Toyako Summit: Reducing 50% GHG emission by 2050.(recognition shared)
 - □ COP14: no progress.
- No regret option should be adopted
 - Nuclear option is best choise.
 - Saving energy, increasing efficiency and renewable option are also no regret. However, they can not satisfy demand since amount of supply is limited.

16 MI081220

福田総理講演資料より

2.2 Japanese Policy and Prospect

- Basic Energy Policy: 3E policy Economy, Environment, Energy Security satisfied simultaneously.
- Nuclear Energy Policy
- Cool Earth 50
- Fukuda Vision (Prime minister at the time)
 - 60-80% GHG emission reduction by 2050
 - GHG emission peak out in few years
 - Increase of zero emission generation such as nuclear and renewable 40-50% above 2006, etc.
- **Senior proposed "Triple 50" policy.**

Japan's Energy Policy

"Triple 50" Proposed to Prime Minister

Outline of Proposal for Cool Earth 50

- **Goal** : Triple 50
 - Dependency on domestic energy up to 50%, CO2 emission reduction 50% by 2050
- □ By :
 - save energy and increase efficiency to reduce demand: 25%, increase of renewable twice and nuclear 2.5 times, reduction of fossil fuel: 50%.
- Proposal was submitted to Prime Minister Fukuda (at the Time) by senior 3 parties.

Outline of "Triple 50" Proposal

25% demand reduction by save energy and efficiency increase, dependency on fossil energy 50%, increase of nuclear and renewable 50%.

EEE会議福田総理への提言書より

20

3 Scenario of Recycle Option

- Recycled Pu will be used in Pu-thermal (MOX fuel) until commercial FBR introduced.
- Existing reactors will be replaced by advanced light water reactor from around 2030.
- Commercial FBR will be introduced by 2050 and the light water reactors will be replaced since then.
- Second reprocessing facility will start around the termination of Rokkasho reprocessing facility. Recycled Pu will be reused in FBR.

Outline of JNFL's Nuclear Fuel Cycle Facilities

(As of December 31, 2007)

	Reprocessing Plant	MOX Fuel Fabrication Plant	Vitirfied Waste Storage Center	Uranium Enrichment Plant	Low-level Radioactive Wasate Disposal Center	
Site	ly. Kam	asakatai, Rokkasho-mu iikita-gun, Aomori Prefe	ra, cture	Oishitai, Rokkasyo-mura, Kamikita-gun, Aomori Prefecture		
Capacity	Maximum capacity: 800 ton-U/year Storage capacity for spent fuel:3,000ton-U	Maximum capacity: 130 ton-HM/year(*)	Storage capacity for wastes returned from oversea plants: 1,440 canistiers of vitrified waste Planned to be expanded to 2,880 canisiters	1,050 ton-SWU/year(") Planned to be expanded to a maximum capacity of 1,500 ton-SWU/year	Authorized capacity: 200,000m ³ (equivalent to 1 million 200 liter drums) Planned to be expanded to 600,000m ³ (equivalent to 3 million 200 liter drums)	
Current Status	Under construction	Applying for a business license	Cumulative number of stored canisters:1,310	Present capacity: 300 ton-SWU/year	Cumulative number of stored drums:199,539	
Construction Cost	about 2.19 trillion yen	about 130 billion yen	about 80 billion yen (**)	about 250 billion yen	about 160 billion yen (***)	
Schedule	Start of construction:1993 Start of operation: 2008(planned)	Start of operation: 2012(planned)	Start of construction: 1992 Start of storage: 1995	Start of construction:1988 Start of operation:1992	Start of construction:1990 Start of operation:1992	

(*) "ton-HM" stands for "tons of heavy metal" which indicates the weight of plutonium and uranium metallic content in MOX.

"SWU" stands for "Separative Work Unit" which is a measure of the work expended during an enrichment process of uranium. (**) Construction expense regarding 1,440 canisters of vitrified waste.

(***)Construction expense regarding 200,000m³ low-level radioactive waste (equivalent to 1 million 200 liter drums) (Source) JNFL's website and others

(2007年12月末現在)

日本原燃・青森県六ヶ所村

	再 処 理 工 場	MOX燃料工場	高レベル放射性廃棄 物貯蔵管理センター	ウ ラ ン 濃 縮 工 場	低レベル放射性 廃棄物埋設センター		
建設地点		六ヶ所村弥栄平地区			六ヶ所村大石平地区		
施設の規模	最大処理能力 800トン・U/年 使用済燃料貯蔵 容量 3,000トン・U	*1 最大処理能力 130トン・HM/年	返還廃棄物貯蔵 容量 ガラス固化体 1,440本 将来的には 約2,880本	**1 1,050トンSWU/年 最終的には 1,500トンSWU/年 規模	約20万立方メートル (200ℓドラム缶 約100万本相当) 最終的には 約60万立方メートル (200ℓドラム缶 約300万本相当)		
現 状	建設中	事業許可申請中	累積受入1,310本	300トンSWU/年 規模で操業中	累積受入199,539本		
建設費	約2兆1,900億円	約1,300億円	^{※2} 約800億円	約2,500億円	^{※3} 約1,600億円		
工期	工事開始 1993年 操業開始 2008年(予定)	操業開始時期 2012年(予定)	工事開始 1992年 貯蔵開始 1995年	工事開始 1988年 操業開始 1992年	工事開始 1990年 埋設開始 1992年		

※1 HM:MOX中のプルトニウムとウランの金属成分の重量、SWU:ウランを濃縮する際に必要となる仕事量の単位 ※2 高レベル放射性廃棄物(ガラス固化体)1,440本分の建設費 ※3 低レベル放射性廃棄物20万立方メートル(200 l ドラム缶約100万本相当)分の建設費

出典:日本原燃ホームページ 他

23

4 Processing and Disposal of Radioactive Waste

24

■ LLW Disposal Center started at Rokkasho.
■ 200,000m³(current)→finally 600,000m³
■ HLW

Acceptance of resident of HLW disposal site is dominant issue.

Conceptual Diagram of LLW Disposal

Conceptual Diagram of HLW Disposal

MI08122出典:資源エネルギー庁「原子力2004」

2 ND MEETING BETWEEN AESJ-SNW AND TAIWAN-NIC , 2008.12.20. AT NTHU

5 Conclusion

- Nuclear option is best solution for energy resource issue and mitigation of global warming.
- Renaissance will continue from this point of view.
- For Japan, increase of dependency on domestic energy is important and nuclear will play dominant roll on this issue.

高レベル放射性廃棄物(ガラス固化体)ができるまで

出典:高レベル放射性廃棄物処分懇談会報告書

高レベル放射性廃棄物処分の取り組み体制

高レベル放射性廃棄物の処分地選定プロセス

世界の高レベル放射性廃棄物処分計画

33

国名	使用済燃料取扱	軽水炉 プルトニウム利用	廃棄物処分 実施主体	廃棄物処分形態	処分量	処分地候補 及び岩種	処分深度	処分開始 予定時期	備考
フランス	再処理	推進中	放射性廃棄物 管理機構(ANDRA)	未定	未定	未定	400~ 1,000m	未定	処分形態について、地層処分、分離変換 技術、長期貯蔵について、研究実施中
日本	再処理	少量の使用 実績あり	原子力発電 環境整備機構 (NUMO)	ガラス 固化体	未定	未定	300m 以深	2030年代~ 2040年代半ば	
ベルギー	(海外委託)再処理 (1991年まで) 間接処分	推進中	放射線廃棄物・ 核物質管理庁 (ONDRAF/NIRAS)	ガラス固化体 (返還廃棄物) 使用済燃料	未定	候補地 : 選定未着手	220m	2010年	現在、再処理中止
スイス	(海外委託)再処理 (2006年まで) 間接処分	推進中	放射線廃棄物 管理協同組合 (NAGRA) (政府·民間共同出資)	ガラス固化体 (返還廃棄物) 使用済燃料	4,400トン (ウラン換算、内再 処理は1,200トン)	候補地:未定 岩種:花崗岩 オパリナス粘土	400~ 1,000m	2050年	
アメリカ	(国が引き取り) 直接処分	実績あり 現在は中止	エネルギー省 (DOE)	使用済燃料 ガラス固化体	70,000トン (ウラン換算)	候補地: ユッカマウンテン 岩種:凝灰岩	200~ 500m	2017年	
ドイツ	(海外委託)再処理 (2005年まで) 直接処分	推進中	連邦放射線 防衛庁(BfS)	使用済燃料 ガラス固化体	24,000m ³ (廃棄物量、 使用済燃料、 ガラス固化体等)	候補地: ゴアレーベン 岩種:岩塩ドーム	840~ 1,200m	2030年	ゴアレーベンを含めサイト 選定手続再検討中
フィンランド	直接処分	実績なし	(民間会社) ポシヴァ社	使用済燃料	6,500トン (ウラン換算)	候補地: オルキルナイト 岩種:結晶質岩	500m (基本ケース)	2020年	
スウェーデン	直接処分	実績あり 現在は中止	(民間会社) 核燃料・廃棄物 管理会社(SKB)	使用済燃料	9,300トン (ウラン換算)	候補地:オスカーシャム エストハンマル 岩種:結晶質岩	400~ 700m	2020年代 前半	

出典:原子力ポケットブック2007年版

第13回特定放射性廃棄物処分安全調査会資料等