

放射線計測とトリチウム問題

名古屋大学 名誉教授 井口哲夫

放射線計測技術全般について超入門的に概観し、それらの技術 が福島原発第一からのトリチウム(ALPS処理)水の海洋放出でど のように関わっているかを紹介する。

- 1. 放射線計測の超高速入門(半年間12コマの講義を~30分で)
 - 放射線検出原理
 - ・
 か射線検出器の性能指標
 - ・放射線検出システムの基礎の基礎
 - ・放射線測定データの基本的取り扱い
- 2. 福島原発第一からのトリチウム(ALPS処理)水測定
 - ・トリチウムの性質
 - 液体シンチレーションカウンター
 - トリチウム分析試料の調整法(迅速測定に向けて)
 環境中(人体を含む)のトリチウムの現況

放射線測定器で何を測っているのか?

***	大县结长山田本园	エネルギー分解能	時間分解能	空間分離	線量計への		
快口万式	成別稼使山番の例	^{按□ ₩ 07 179} (相対半値幅%) (秒)		画像測定適用性 ¹⁾	検出器サイズ ²⁾	利用	
	電離箱	0.5 ~2	10 ⁻³ ∼10 ⁻⁸	Δ	中	0	
電離電荷検出	比例計数管	2 ~10	10 ⁻⁶	0	中~大	0	
	GM計数管	×	10 ⁻³ ∼10 ⁻⁶	Δ	中	Ø	
	半導体検出器	0.1 ~ 1	10 ⁻⁶ ~10 ⁻⁸	Ø	小~中	0	
発光検出	シンチレーション検出器	5 ~ 20	10 ⁻⁶ ∼10 ⁻⁸	0	中	Ø	
	熱蛍光線量計(TLD)	×	×(数秒以上)	Δ	小~中	Ø	
	輝尽性蛍光体(IP, OSLD)	×	×(数秒以上)	Ø	小~大	Ø	
照射効果検出	写真フィルム 原子核乾板 泡箱 固体飛跡検出器 蛍光ガラス線量計 化学線量計	× 5 ~ 10 10 ~ 20 × × ×	×(数秒以上) ×(数秒以上) 10 ⁻³ ~1 ×(数秒以上) ×(数秒以上) ×(数秒以上)	© © ○ △ ×	小~大 小~中 小~中 小~中	00000	

注1) 空間分解能の目安 ◎: µmオーダー、O: mmオーダー、△: cmオーダー

注2) 検出面積の目安 小:~1cm角、中:10~20cm角、大:~20cm角以上

電離電荷検出方式の原理

荷電粒子が媒質を通過する際、飛跡に沿って媒質を電離 ⇒生成された電荷担体を外部電場を印加して回収

Ⅰ. 媒質:気体 ⇒ 電荷担体:電子とイオン

1. **電離箱** (Ionization chamber)

2.比例計数管 (Proportional counter)

3.GM計数管 (Geiger-Muler counter)

Ⅱ. 媒質:固体 ⇒ 電荷担体:電子と正孔

4. 半導体検出器 (Semiconductor diode detector)

媒質中の電荷担体の挙動 ⇒ 検出器出力信号の特性を決定

・媒質の電離過程

主要な過程

・電荷担体の媒質中の流動(外部電場印加時)

(気体)電離電荷検出器の基本構造(コンデンサ)

	平行平板型
易:	$E = \frac{V_0}{d}$

電場:

$$E = \frac{V_0}{\ln(b/a)} \cdot \frac{1}{r} \qquad \qquad E = V_0 \frac{ab}{b-a}$$

同じ電圧で強い電場が生成可能 ⇒ 自己放電による電荷増幅

(平行平板型)電離箱の動作原理

(具体例)

電離箱サーベイメータ

- •入射γ(X)線の検出効率のエネルギー依存性が小
- (検出器応答が平坦)
- ・低線量場では電流量が少なく、高い精度の測定が
 困難

日立アロカメディカル(株) 電離箱式サーベイメータ(ICS331B)

(具体例)GMサーベイメータ

 ソケット
 心線

 (タングステン:陽極)

 アルミ

 ガラス

 (内面電導性:陰極)

 カウンタガス

日立アロカメディカル(株) GMサーベイメータ(TGS146B) B(γ)線表面汚染測定用

•安価

•荷電粒子に高感度

•エネルギー情報が得られない

中心電極(心線)近傍で自己放電⇒信号パルスの自己増幅

固体(半導体/絶縁体)の電離電荷検出器 電気伝導の担体(キャリア) ⇒ 電子/正孔対

固体中の電子状態 → エネルギーバンド構造

- ・価電子帯 (Valence band):結晶中の特定格子位置に束縛されている電子に対応。
- ・伝導帯 (Conduction band): 結晶中を自由に移動する電子に対応。

→禁止帯(Forbidden band or band gap) E_g の大きさ: 絶縁体 $E_g > 5eV$

半導体検出器の動作原理

pn接合半導体に逆バイアス ⇒ 自分自身の電荷が流れない領域:空乏層が生成 空乏層に外部からの放射線で生じた電荷は区別して検出可 ⇒ 固体の電離箱

(参考)よく使われる半導体検出器形式の例

1) 表面障壁型Si検出器

n 型高純度Siの表面を酸化 → p 型層、荷電粒子検出用

2) Si(Li)検出器

格子間原子によるドナー準位の生成

p-i-n 接合:リチウムドリフト法

p型SilにLiを拡散

→ドナー不純物Li⁺の数 = アクセプタ不純物の数

(正味不純物濃度 N_n-N_p~0)

Li補償による見掛け上の高純度(真性)物質領域 i.e.厚い空乏層(有感)領域の形成が可能

3) 高純度Ge検出器

極めて低い不純物濃度(~10¹⁰atom/cm³)の Ge結晶に逆バイアス電圧印加

Planar high-purity germanium (hpGe) radiation detector

励起発光検出器システムの構成例

※トリチウム測定には、有機液体シンチレータがよく使われる。

(参考)放射線による物質の発光現象

励起状態→基底状態への緩和過程

ONon-radiative(quenching) process:非放射/クエンチ(消励起)過程

・原子/分子振動、回転等、熱運動へ消費

ORadiative process:光子放出過程 Luminescence

•Fluorescence: 蛍光(即発30ns~遅発10µs)

(Scintillation:シンチレーション~放射線励起に伴う蛍光?)

•Phosphorescence: 燐光(msec~sec)

※励起状態が準安定(あるいは永続的)に存在

被照射固体に、外部より熱的あるいは光学的刺激

→ 光放出を伴って準安定状態が緩和、元の状態に回復

・熱刺激ルミネセンス(Thermally stimulated luminescence:TSL):熱蛍光線量計

・光刺激ルミネセンス(Optically stimulated luminescence:OSL、:ガラス線量計
 またはPhotostimulated luminescence:PSL) 輝尽性蛍光線量計

History of the discovery of important inorganic scintillator materials. S.E.Derenzo et al. / N.I.M. A505(2003)111-117

14

<u>光電子増倍管の動作原理</u>

15

(具体例) シンチレーションサーベイメータ

日立アロカメディカル(株) シンチレーションサーベイメータ (TGC-171B)

古川機械金属㈱ ガンマスポッターFGS-02A ·高感度

シンチレータ: Nal(Tl)、GAGG(Ce)等 光センサー:光電子増倍管、MPPC等

放射線検出器の最も簡単なモデル化

<u>電離電荷検出型</u>

放射線検出器の信号生成(電離電荷検出型の場合)

放射線のエネルギー損失(電離)と生成電荷信号の過程

放射線エネルギー付与 → 検出器有効体積中に電荷 Q 生成

→ 電荷収集 (検出器電流 i(t) = dQ/dt)

18

検出器電流 i(t)の測定方式

平均直流電流 = 電流パルスの時間平均の測定 ~ 平均相互作用率

$$I(t) = \frac{1}{T} \int_{t-T}^{t} i(t') dt' \cong q \cdot R \quad = e \cdot (E/W)$$

T:検出器応答時間(T)t_c) q:相互作用当りの平均電荷 R:単位時間当りの相互作用数

- E:有効体積中で、単位時間当りに 付与(吸収)されるエネルギー
- W:W値 i.e. 気体中で1個の電子・イオン対を 生成するのに必要な平均エネルギー~30 [eV]

(2) パルスモード(pulse mode)

電流iがt=0で、 $i_1 \rightarrow i_2$ へステップ状に変化

Kirchhoffの法則から、t≧0で、

 $i_2 = i_c + i_R = dQ(t)/dt + V(t)/R = C \cdot dV(t)/dt + V(t)/R$

パルスモード(Pulse mode)の出力信号波形

(time constant = RC)

<u>各種放射線検出器の代表的な信号出力波高特性</u>

	パルス 電離箱	比例 計数管	G.M. 計数管	Nal(Tl) + 光電子 増倍管	Csl(Tl)+ フォト ダイオード	Si 半導体 検出器	高純度Ge半 導体検出器
信号出力に寄与する電 荷担体	電子・ イオン対	電子・ イオン対	(電子・ イオン対)	光電子	電子• 正孔対	電子 • 正孔対	電子・ 正孔対
単位の電荷担体の 生成に必要な 平均エネルギー	25-35 eV	25-35 eV	—	~150 eV	~50 eV	3.6 eV	3.0 eV
100keVのエネルギー 付与で生成される 電荷担体数	3000~ 4000	3000~ 4000	—	~700	~2000	28,000	33,000
電荷担体の 自己増幅能	1	~10 ³	~10 ⁵ <	~105	1	1	1
100keVのエネルギー 付与で生成される 電荷量	~10 ⁻¹⁵ C	~10 ⁻¹² C	~10 ⁻¹⁰ C	~10 ⁻¹¹ C	3 × 10 ⁻¹⁶ C	10 ⁻¹⁴ C	10 ⁻¹⁴ C
静電容量10 ⁻¹⁰ Fの時の 出力パルス波高電圧	~10 ⁻⁵ V	~10 ⁻² V	~ 1 V	~10 ⁻¹ V	3 × 10 ⁻⁶ V	10 ⁻⁴ V	10 ⁻⁴ V

- •絶対効率(absolute efficiency :ε_{abs})
 - ε_{abs} = 検出器出力(計数パルス数)/線源強度
- •固有効率(intrinsic efficiency :ε_{int})

ε_{int} = 検出器出力(計数パルス数)/検出器に入射した放射線数 ※検出器材料、放射線エネルギー、検出器の実効的厚さに依存

- ・検出器での相互作用をすべて計数 $\rightarrow 2$ $\frac{2}{2}$ $\frac{1}{2}$ e_{total}
- ・検出器へ全エネルギーを付与する相互作用のみ計数 $\rightarrow \frac{ l' 2 m}{2 m}$ ε_{peak}

・ビーク対トータル比(peak-to-total ratio) = $\varepsilon_{peak}/\varepsilon_{total}$

各種放射線検出器における代表的なγ(X)線固有ピーク効率ε_{ip}の比較

γ(X)線以外の放射線測定における検出効率の留意事項

・重荷電粒子: 粒子飛程<検出器厚さにより、ε_{int}~100%、 留意点:入射窓の透過率

・高速電子: 固体検出器により、ε_{int}~100%まで可能、 留意点:検出領域での後方散乱

・中性子: ε_{int}≪100%、留意点:中性子との核反応で、荷電粒子を放出する検出器材
 ex) ¹H(n,n), ³He(n,p), ⁶Li(n,α), ¹⁰B(n,α)などを含有²⁴

エネルギー分解能

単色エネルギー線源に対する検出器の出力波高分布:応答関数(response function) ⇒ ガウス(正規)分布を仮定

半値幅(FWHM: full width at half maximum)だけ離れた2つのエネルギーの放射線は分解可

・電荷担体の統計的変動 <u>エネルギー分解能の主な決定要因</u> - 電荷担体の収集過程の変動

⇒ 測定系全体のエネルギー分解能: $(FWHM)_{total}^2 = \sum_{i} (FWHM)_i^2$

(i.e. 個々の変動源が独立の時、全体の半値幅の二乗=個々の源による半値幅の二乗和)

・回路系の電気的雑音

<u>各種放射線検出器の代表的な信号出力波高特性(再掲)</u>

	パルス 電離箱	比例 計数管	G.M. 計数管	Nal(Tl) + 光電子 増倍管	Csl(Tl)+ フォト ダイオード	Si 半導体 検出器	高純度Ge半 導体検出器
信号出力に寄与する電 荷担体	電子・ イオン対	電子・ イオン対	(電子・ イオン対)	光電子	電子・ 正孔対	電子・ 正孔対	電子・ 正孔対
単位の電荷担体の 生成に必要な 平均エネルギー	25-35 eV	25-35 eV	_	~150 eV	~50 eV	3.6 eV	3.0 eV
100keVのエネルギー 付与で生成される 電荷担体数	3000~ 4000	3000~ 4000	—	~700	~2000	28,000	33,000
電荷担体の 自己増幅能	1	~10 ³	~10 ⁵ <	~105	1	1	1
100keVのエネルギー 付与で生成される 電荷量	~10 ⁻¹⁵ C	~10 ⁻¹² C	~10 ⁻¹⁰ C	~10 ⁻¹¹ C	3 × 10 ⁻¹⁶ C	10 ⁻¹⁴ C	10 ⁻¹⁴ C
静電容量10 ⁻¹⁰ Fの時の 出力パルス波高電圧	~10 ⁻⁵ V	~10 ⁻² V	~ 1 V	~10 ⁻¹ V	3 × 10 ⁻⁶ V	10 ⁻⁴ V	10 ⁻⁴ V

各種放射線検出器における代表的なエネルギー分解能の比較

<u>エネルギー分解能の主な要因</u>

- ・電荷担体の生成統計(ΔE_s): ($\Delta E_s / E$)_{Limit} = 2.35 $\sqrt{F / N}$ N:電荷担体総数、F:ファノ因子
- ・電荷担体の収集(または増幅)過程の統計、不感層の影響(ΔE_c)
- ・電子回路系や検出器漏洩電流の雑音 (ΔE_{el})

⇒ 全エネルギー分解能:
$$\Delta E_T^2 = \Delta E_s^2 + \Delta E_c^2 + \Delta E_{el}^2$$
 27

(参考)Nal(TI)検出器とHPGe検出器によるCs放射能測定例

φ2×2インチNalシンチレーション検出器 を内蔵した食品放射能測定システム

ゲルマニウム検出器

<u>検出下限</u>

~30Bq/kg (900mL、10分測定)

~4Bq/kg (100mL、90分測定)

放射線測定データの取扱い

原子核からの放射線の放出 → 量子論に従う

: 確率的性質 (本来、統計的に不確定)

29

<u>基本原理:測定データの平均値は分散に等しい!</u>

計数値がNカウントのとき、その分散はN、 標準偏差は√Nとみなす。

(例)1回の測定の精度予測

N=100カウントのとき、

計数値のばらつく範囲は、100±10(1σ)

ただし、正規分布モデルを仮定すると、

計数値が90~110の範囲に収まる確率は~68%

測定時間が長いほど、試料の量が多いほど、検出限界値は小さくなる

環境省 放射線による健康影響等に関する統一的な基礎資料(令和3年度版) 31

東京電力福島第一原発のALPS処理水における トリチウム(水)測定

トリチウム:水素の同位体(原子番号が同じだが、質量数が異なる)

トリチウムの壊変(放射線発生の特性)

トリチウムの一般的な測定法

- 1. 気体状のトリチウム(化学形:HT, HTO水蒸気、CH₃T等)
 - ・<u>電離箱法</u>:測定対象ガスを電離箱内に導入して測定。
 安定な微弱電流測定が必要。
 - <u>分離式トリチウムモニタ法</u>:水分のみを透過する中空糸 膜に測定対象の気体を透過させ、膜を透過した後の 水蒸気状トリチウムを電離箱で測定(次頁参照)
- 2. 液体状のトリチウム(化学形態:HTO水,有機結合型T)
 <u>液体シンチレーションカウンタ法</u>:放射線が当たると微弱な 光を発する乳化シンチレータを測定対象物に添加

※トリチウム測定を行う前の試料の前処理が重要!

文部科学省の放射能測定法シリーズ9トリチウム分析法で公定化

(参考)JAEA新型転換炉ふげんにおける空気中 トリチウム濃度モニタリングシステム

膜分離式トリチウムモニタの概念図

液体シンチレーションカウンターの基本原理

- 試料
- 溶媒分子
- 蛍光物質(溶質分子)
- ロ クエンチャー
- ~~~~ *β線*
- → 励起エネルギーの移行 ~~~ 蛍光

<u>シンチレータ溶液</u> 溶媒 に 溶質 を溶かし込んで作成 溶媒: トルエン、キシレン、ジオキサン等 第1溶質: PPO や butyl PBD 第2溶質: POPOP や DMPOPOP (P: phenol、O: oxazole、D:1,3,4 oxadiazole、M: methyl を意味)

<u>長所</u>

- ・放射線の自己吸収無し(全エネルギーを 検出信号に変換可)
- ・放射性原子の周囲がシンチレータで 囲まれ、4π(全立体角)検出が可

<u>短所</u>

- ・試料の化学的性質や共存物等により、 クエンチング(消光)現象が生じ、検出効 率が低下
- ・試料やサンプル容器等から疑似発光
 が生成することあり

液体シンチレーションカウンターシステムの基本構成

(参考)クエンチングによる β線スペクトルの変位とチャンネル比の考え方

マルチチャンネルアナライザからの出力情報(パルス波高分布)

クエンチング補正曲線(2次多項式曲線近似)(北大LSC実習資料から引用)

既知の放射能濃度とクエンチング量の異なる試料を用いて、 チャンネル比(A/B)と計数効率の相関(検量線)を作成

⇒ 外部標準γ線源(¹³⁷Cs)照射により、各測定試料ごとのA/B比を 実測で求め、検量線を用いて計数効率に換算

(参考)市販の液体シンチレーションカウンターシステム外観

古いタイプ(1983年製品化)

現行タイプ: AccuFLEX LSC-8000

20ml試料バイアル瓶 (ポリエチレン製、使い捨て) 5ml試料ミニバイアル瓶 コンパクト化
 (旧タイプサイズの~1/2以下)
 高機能化
 (高分解能スペクトル測定、 測定精度改善、操作の

スマート化など)

経済産業省資料「環境中のトリチウム測定について」

経済産業省資料「環境中のトリチウム測定について」

5日

通常のトリチウム分析法(公定法)では、1週間以上の時間が必要

数時間

数時間

所要時間

~10分

迅速測定のため、測定下限を10Bq/L ・蒸留と濃縮なし (EU圏内の飲料水中のトリチウム濃度 •試料放置、LSC 限度の1/10)まで許容 シンチレータ 測定を暗室や 10Bq/Lを超えるか LED光等、光 試料採取 LSC ろ過 測定 超えないかの確認が 刺激のない 放置 部屋で実施 ~1時間程度で可能 1時間 10分

> 2023年2月10日中部原子力懇談会RI・放射線利用セミナー、 鳥養裕二教授(茨大・理)講演資料から抜粋引用

1日

1日

福島原発近海の魚のトリチウム分析

分析に必要な時間

- •自由水:~3週間超
- ・有機結合型(炭水化物、脂質、核酸等):1ヶ月以上
 - ⇒ 迅速な分析法(安全確認の方法)が必要

2023年2月10日中部原子力懇談会RI・放射線利用セミナー、 鳥養裕二教授(茨大・理)講演資料から抜粋引用

電子レンジを用いた魚の自由水の回収

<u>手順</u>

- 試料を蓋部分に穴が開いたレンジ対応容器に収納
 容器をチャック付きポリ袋に入れて密封
- ③電子レンジで加熱して、水を回収

非常に簡単な手順
 不純物の少ない
 水の回収
 測定機器の汚染なし

25~40gの 試料から ~15mlの自由水回収

自由水は~15分程度で回収

2023年2月10日中部原子力懇談会RI・放射線利用セミナー、 鳥養裕二教授(茨大・理)講演資料から抜粋引用

マイクロ波加熱法の適用性確認

マイクロ波加熱により回収した自由水に、重水起因の トリチウムを35Bq/L添加して測定した結果例

迅速な魚中トリチウム濃度のスクリーニング法(判断基準:100Bq/L)

鳥養裕二教授(茨大・理)講演資料から抜粋引用

トリチウムの自然界での存在量

環境省 放射線による健康影響等に関する統一的な基礎資料

トリチウムの放射性降下物の経時的水位

出典: UNSCEAR2016年報告書Annex C-Biological effects of selected internal emitters-Tritium

環境省 放射線による健康影響等に関する統一的な基礎資料

トリチウムの人体での挙動

人体中のトリチウム濃度は、環境中トリチウム濃度と平衡状態~0.5Bq/L

各種トリチウム濃度と年間被ばく線量の比較

参照項目	トリチウム濃度 (Bq/kg)	1年間摂取時の年間被ばく線量 (mSv/年)
マウス実験による発がん頻度が 自然発生より上昇する濃度	139,000,000	2,055
ICRPが人体に問題ないとする 濃度	60,000	0.89
管理区域・原子力施設からの 排水基準	60,000	0.89
WHOの飲料水のガイドライン	10,000	0.15
核実験当時の降水中の濃度1)	110(平均)	0.0017
現在の降水中の濃度(全国)2)	7.3(最大)	0.00011
海水中の濃度(全国)2)	20(最大)	0.00030
水道水中の濃度(全国)2)	1.2(全国)	0.000018
東京電力が海洋放出を行っている 濃度	1,500	0.022

1)環境放射線データベース、2)環境省モニタリング実施状況

福島原発第ーALPS処理水の分析体制

内部精度管理(東電と国内第三者機関による相互チェック)
 外部精度管理(ISO/IEC国際規格取得)の体制構築

おわりに

<u>本講演のオチ?</u>

- ・放射線計測技術の肝の部分について超高速で概説
- ・福島原発第一からのトリチウム(ALPS処理)水の海洋放出に 関わる放射線測定の概要および環境影響等について紹介

Oトリチウム(ALPS処理)水の海洋放出は、最も確実(実測による 直接確認)で合理的な(安全性と経済性が両立した)処分方法

〇現行の分析体制は十二分に整備されており、計画通りに海洋放 出処分がなされる限り問題はないと考えられる。しかし、海洋拡散 による希釈効果で、環境中のトリチウムとの区別(有意な差の検出) はできないであろう。

〇今後~30年に渡って、東京電力が当初計画通りに、ALPS処理水の設備運用・維持がなされているか、および国際的な信頼性のもとに適正な分析が継続され、客観性・透明性のある分析結果が包み隠さず提供されているかを監視・見守っていくことが必要。

ご静聴、 ありがとう ございました。

それでは、本日のディベートをお楽しみください。

環境省 放射線による健康影響等に関する統一的な基礎資料

(付録1ALPS処理水の海洋放出設備の概要

海洋放出設備(ALPS処理水希釈放出設備と放水設備で構成)の全体像

原子力規制特定原施監視評価検討会(2022.7.20)資料