ウラン(VI)選択性沈殿剤としての架橋ピロリドン誘導体の開発

〇風間 裕行, 池田 泰久, 鷹尾 康一朗 東エ大・先導原研

Objective

Synthesis and Characterization of Uranyl Nitrate Complexes with Various Double-Headed NRPs • Evaluation of Capability of NRPs as Precipitant for UO_2^{2+} from Viewpoint of Structural Chemistry

	С	Н	Ν	Raman & IR (cm ⁻¹)	
calcd. / %	28.84	3.03	8.41	V _{symmetric}	v _{asymmetric}
found/ %	28.79	2.97	7.96	854	935

Conclusion

Stored in Dark

 $UN-L_1$, $UN-L_2$, $UN-L_5$, $UN-L_6$ and $UN-L_7$ were synthesized and characterized by single crystal X-Ray Diffraction, elemental analysis, IR and Raman spectra. High symmetry of UN-NRPs and moderate flexibility of bridging moiety are important for efficient precipitation of U(VI) in HNO₃ solution.

Future Work

 Precipitation Experiment for Tetravalent Actinides, U(IV) and Th(IV) • Decontamination Experiments for Simulated FPs, F⁻ and Al³⁺

*This study is the result of "Fundamental Study on Simple Reprocessing Method for Spent Thorium Fuels by Using Uranium-Selective Precipitant" entrusted to Tokyo Institute of Technology by MEXT