

2011 December

Current Reprocessing and Pu Utilization

Gary Dyck Nuclear Fuel Cycle and Materials

International Atomic Energy Agency

- Uranium Production
- Conversion
- Enrichment
- Reactor Fuel Fabrication
- In-Reactor Fuel Performance
- Spent Fuel Management
- Spent Fuel Recycle
- Advanced Fuel Cycles and Materials
- Disposal

Nuclear Demand Projections

Reference Data Series #1

 Now includes "effect" of Fukushima

http://www.iaea.org/OurWork/ST/NE/Pess/RDS1.html

Status of Spent Nuclear Fuel

- The total amount of spent fuel that has been discharged globally is approximately 334 500 tonnes of heavy metal (t HM).
- The annual discharges of spent fuel from the world's power reactors total about 10 500 tHM per year.

Status of Spent Nuclear Fuel

- The total amount of spent fuel that has been discharged globally is approximately 341 000 tonnes of heavy metal (t IHM) in 2011.
- The annual discharges of spent fuel from the world's power reactors total about 11 300 t IHM per year.

• Wet and dry storage have provided flexibility for spent fuel management

Wet Storage (CLAB-Sweden)

Dry Storage (Surry – USA)

International Atomic Energy Agency

International Atomic Energy Agency

PUREX Spent Fuel Recycle

- Recycled uranium can be re-enriched and reused as reactor fuel, or re-used "directly" in HWRs
- Plutonium can be used as fissile material in MOX fuel for thermal reactors or saved for use as fuel in fast reactors
 - Between 30-50% of the cost of fuel is enrichment

Spent Fuel Recycle

• Who Recycles?

China Lanzou 50

(Future 800)

UK Magnox 1500 Thorp 900

France

La Hague 2x800

India

Trombay 60 Tarapur 100, 150 Kalpakkam 100, 150

Russia

Chelyabinsk 400 (Krasnoyarsk 1500)

Japan Tokai-mura 90

(Rokkasho-mura 800)

MOX Fuel Management

MOX RELOADS IN COMMERCIAL PWRs AND BWRs FROM 1981 TO THE END OF 2000

Country	Number of	Number of	Maximum FA average	Maximum	
reactor type	reactors licensed	assemblies	$Pu_{tot} (Pu_{fiss}) (\%)/$	FA burnup (GW·d/(t HM))*	
(FA type)	for MOX	reloaded	carrier material		
Belgium					
PWR (17x17 – 24)	2	96	7.5 (4.9)/U _{tails}	47.7	
France					
PWR (17x17 – 24)	20	1400	6.7 (4.5)/U _{tails}	40.0	
Germany					
PWR (18x18 – 24)	2	72	6.9 (4.6)/ U _{tails}	43.4	
PWR (16x16 - 20)	5	504	6.3 (4.2)/ U _{tails}	49.0	
PWR (15x15 – 20)	1	32	4.3 (3.0)/U _{nat}	42.0	
PWR (14x14 - 16)	1	45	5.6 (3.8)/U _{nat}	37.0	
BWR (9x9 – 1,					
10x10 – 9Q)	2	212	5.4 (3.6)/ U _{tails}	50.5	
India					
BWR (6x6 – 1)	2	10		16.0	
Switzerland					
PWR (15x15 – 20)	1	68	7.3 (4.8)/ U _{tails}	51.0	
PWR (14x14 – 17)	2	152	6.2 (4.1)/ U _{tails}	40.0	
* Max	imum MOX assemb	bly burnup of regu	lar reloads (not lead test asse	mblies).	

MOX Fuel Management

STATUS OF COMMERCIAL MOX LICENSING IN THERMAL REACTORS AT 2000

	Reactors	Maximum	MOX fuel	Maximum ^a	Maximum ^a
	licensed for	fresh MOX	assembly	Pu_{tot}/Pu_{fiss}	discharge
Country	MOX	fuel assemblies	content	in the core	burnup
	(reactor type)	per reload	(%)	(wt%)	
Belgium	2 (PWR)	b	24	b	50
France	20 (PWR)	16	31	Equivalent to	c
				3.25 wt% 235U	
Germany ^d	9 (PWR)	24	50	^b /4.65	e
	2 (BWR)	68	38	^b /4.04	
Ionon	$2 (\mathbf{DW} \mathbf{D})$	b	25	Equivalant to	15
Japan	2 (F WK)	-	23	4.1 wt 0/225 J	45
	γ (DWD)	b	11	4.1 wt% 2550	40
	$2 (\mathbf{D} \mathbf{W} \mathbf{K})$		44	$\frac{1}{2} O_{\rm wt0/} 225U$	40
				5.0 Wt% 2550	
Switzerland ^d	3 (PWR)	16	40	^b /4.8	b

^a Fuel assembly average.

^c Limited by maximum of three in-core cycles; no explicit burnup restriction.

^d Individual licensing situation for each plant type; maximum values provided if applicable.

^e No general restriction; temporary restriction to fuel rod burnup of 55 MW·d/kg for some plants.

^b No individual restriction.

Country	Commercial LWRs licensed For MOX (end of 2000)
Belgium	2 PWR
France	20 PRW
Germany	9 PRW 2 BWR
Japan	2 PWR 2 BWR
Switzerland	3 PWR

Country	MOX Reloads (LWR) from 1981 to 2000
Belgium	96
France	1400
Germany	850
India	10
Switzerland	220

 $CI_2 + O_2 + N_2$

 CI_2

Some IAEA findings on reprocessing

- The design of advanced reprocessing methods must deal with (1) safety, (2) the control and minimization of plant effluents, (3) minimization of the waste generation, (4) the production of stable and durable waste forms, and (5) economic competitiveness.
- International collaboration on the development of advanced reprocessing methods is essential to facilitate the future deployment of these technologies.

- SNF (341 000 tonnes) can be considered a waste or a resource
- About 30% of SNF is recycled (PUREX/MOX)
- All of the rest is currently in storage
- For the future, PUREX may not be the most appropriate technology
- Many new advances in both hydro- and pyrometallurgical methodologies

International Atomic Energy Agency