Chemistry R & D for Back End Fuel Cycle for Fast Reactors in India

14	P	1	
5	STATE		
			Ę
2	E	HI	
1			L

P.R.Vasudeva Rao

Indira Gandhi Centre for Atomic Research Kalpakkam vasu@igcar.gov.in

> Global2011 13 Dec.2011

FBR Evolution in India

Fast Reactor Fuels in India

Fuel		Pu content (Pu/(U+Pu)	Reactor	Remarks
Uranium, plutonium mixed carbide	(U,Pu)C	0.7 /0.55	FBTR	Fuel has reached a burn-up of 162 GWd/t; fuel discharged upto 150 GWD/T has been reprocessed; fuel fabricated from Pu recovered and loaded in FBTR
Uranium, plutonium mixed oxide	(U,Pu)O ₂	0.21 / 0.28	PFBR	Test fuel has reached burn- up of 112 GWd/t in FBTR; PIE under progress
Uranium, plutonium- zirconium metal alloy	U-Pu-Zr	0.19	Future FBRs	Sodium bonded U-Zr fuel pins under irradiation in FBTR; pyroprocessing under development

Reprocessing and Waste Management

Comparison of Tri-n-butyl phosphate (TBP) and Tri-iso-amyl phosphate (TiAP)

Extraction and stripping behaviour of TiAP is comparable to that of TBP.

TiAP has high capacity to load tetravalent metal ions such as Pu(IV) and Th(IV) without third phase formation.

Its radiation stability is at par with that of TBP.

Property		Extractant	
	TBP	TiAP	
Molecular Weight (g/mol)	266.3	308.4	
Density of TalP at 298 K (g/cc)	Dry	0.976	0.948
	WS	0.980	0.952
Density of 1.1M TalP/n-DD at 298 K (g/cc)		0.812	0.812
Solubility of water in TalP at 298 K (mg H ₂ O/mL WS	TalP)	67.0	41.1
Aqueous solubility of TalP at 298 K (mg TalP/Ł water	388	< 100	
$[HNO_3]_{org}$ in equilibrium with 4M HNO ₃ for 1.1M TalP/i absence of metal ions at 303 K (mol/ ℓ)	0.824	0.810	
<i>D</i> _{U(VI)} from nitric acid media by 1.1M TalP/n-DD at 303 K	0.01M HNO ₃	0.01	0.011
	4M HNO ₃	30.9	35.2
$D_{Pu(IV)}$ from nitric acid media by 1.1M TalP/n-DD at	$0.5M HNO_3$	0.81	0.90
303 K	4M HNO ₃	24.1	29.3
LOC for TPF at 303 K (mg/mL) in 1.1M TalP / n-DD $-$ 3M HNO ₃ system	40.1	75.6	
LOC for TPF at 303 K (mg/mL) in 1.1M TalP / n-DD – I 3M HNO ₃ system	~ 60	No TPF under similar conditions. ~ 120 g/£ can be loaded.	

• TalP: Trialkyl Phosphate; WS: Water Saturated;

LOC: Limiting Organic Concentration; TPF: Third Phase Formation

Demonstration of Feasibility of using TiAP as an Alternate Extractant in FRFR

TiAP extraction study:

Feed: U 67 mg/ml, Pu 32 mg/ml in 3.7 M nitric acid U and Pu quantitatively extracted and stripped.

Future studies planned :

- 1) U(VI) extraction by 1.1 M TiAP/HNP under high solvent loading conditions to understand the hydrodynamics of the system for extreme conditions.
- 2) Solvent recycling.
- Extraction of heavy metals in the presence of FPs – to establish the DFs achievable in TiAP system.

Objective: To develop a process for bulk separation of An and Ln from HLW, and subsequent separation of An from Ln, by compatible processes

Objective: To develop a process for bulk separation of An and Ln from HLW, and subsequent separation of An from Ln, by compatible processes

 HAW (155 GWd/Te) was characterized by various analytical techniques.

Objective: To develop a process for bulk separation of An and Ln from HLW, and subsequent separation of An from Ln, by compatible processes

- HAW (155 GWd/Te) was characterized by various analytical techniques.
- Demonstration run in hot cells
 - Quantitative separation and recovery (>99%) of trivalents (Am(III)+ Ln (III)) from HAW using 0.2 M CMPO-1.2 M TBP
 - Extraction in 5-6 stages; Stripping in 10-12 stages

Objective: To develop a process for bulk separation of An and Ln from HLW, and subsequent separation of An from Ln, by compatible processes

- HAW (155 GWd/Te) was characterized by various analytical techniques.
- Demonstration run in hot cells
 - Quantitative separation and recovery (>99%) of trivalents (Am(III)+ Ln (III)) from HAW using 0.2 M CMPO-1.2 M TBP
 - Extraction in 5-6 stages; Stripping in 10-12 stages
- Nearly 20 25 % of radioruthenium was carried to lean organic
 - Decontaminated with sodium hydroxide or sodium carbonate solutions

Gamma spectra of the feed (a) and aqueous raffinate (b). *The data in (a) and (b) are represented in arbitrary units. The enlarged version (40 - 170 keV) of feed is also shown

Alternate Extractants: Diglycolamides

- R = hexyl, C8-C6 unsymmetrical R = octyl, C8-C8 – symmetrical = TODGA R = decyl, C8-C10 – unsymmetrical
- R = dodecyl, C8-C12 –unsymmetrical

TODGA and TEHDGA –low solubility in aqueous phase & high distribution ratio for An(III) Limitations of Octyl substituents

- Third phase formation with nitric acid and Nd(III)
- Demand phase modifier (0.5 1 M)
- Stripping requires complexing agents and large no. of stages
- Low separation factor of Am(III) over Sr(II)

Increasing the length of the substituent helps w.r.t third phase formation, but reduces Am extraction

Solution: Unsymmetrical diglycolamides ?

Third phase formation of nitric acid (M), 298 K

DGA	[HNO ₃] _{ini}	LOC	CAC
C8-C6	3.6	0.08	3.19
C8-C8	6	0.18	5.14
C8-C10	7	0.20	5.6
C8-C12	12.1	0.28	9.3

Third phase formation of Nd(III) at 298 K

		3 M HNO ₃		4 M HNO ₃		5 M HNO ₃			
	DGA	[Nd] _{ini}	LOC	[Nd] _{ini}	LOC	[Nd] _{ini}	LOC		
		mM	mM	mM	mM	mM	mM		
	C8-C6	Forms t	Forms third phase even with trace levels trivalents at $\geq 3 \text{ M HNO}_3$						
ſ	C8-C8	8	6.4	6	2.4	<1	<1		
	C8-C10	15	13.2	10	8.1	7	3.5		
ł	C8-C12	No third phase even at 600 mM of Nd(III) initial				105	24		

Third phase formation of nitric acid (M), 298 K

DGA	[HNO ₃] _{ini}	LOC	CAC
C8-C6	3.6	0.08	3.19
C8-C8	6	0.18	5.14
C8-C10	7	0.20	5.6
C8-C12	12.1	0.28	9.3

Third phase formation of Nd(III) at 298 K

	3 M HNO ₃		4 M HNO ₃		5 M HNO ₃				
DGA	[Nd] _{ini}	LOC	[Nd] _{ini}	LOC	[Nd] _{ini}	LOC			
	mM	mM	mM	mM	mM	mM			
C8-C6	Forms t	Forms third phase even with trace levels trivalents at $\geq 3 \text{ M HNO}_3$							
C8-C8	8	6.4	6	2.4	<1	<1			
C8-C10	15	13.2	10	8.1	7	3.5			
C8-C12	No third phase even at 600 mM of Nd(III) initial				105	24	\triangleright		

Third phase formation of nitric acid (M), 298 K

DGA	[HNO ₃] _{ini}	LOC	CAC
C8-C6	3.6	0.08	3.19
C8-C8	6	0.18	5.14
C8-C10	7	0.20	5.6
C8-C12	12.1	0.28	9.3

Diglycolamic acids for Ln(III)/An(III) separation

0.1 M HDEHDGA, Aq. Phase: [DTPA], nH=3			0.3 M HDEHSDGA, Aq. Phase: [HNO3], pH=3				
	A				r	-	
[DIPA]/ M	D _{Eu}	D _{Am}	SF	[TPEN]/M	D _{Am}	D _{Eu}	SF
0	298	141	2.1	0	0.6	4.2 x 10 ⁻³	141
10-5	27.6	0.19	145	0.005	0.7	4.6 x 10 ⁻³	152
10-4	4.9	6.5 x 10 ⁻²	75	> 0.01	1.0	2.3 x 10 ⁻³	440
0.001	0.8	1.7 x 10 -2	45	0.1	9.8	3.7 x 10 ⁻³	2648
0.005	0.2	2.5 x 10 ⁻²	10	-	-	-	-

RTIL as diluent: effect on third phase formation

Variation of europium(III) loading in 0.2 M CMPO – 1.2 M TBP/bmimNTf₂ at various initial concentrations.

3M	51	М
/ 2221/		VI
n 333N	303K	333K
2 11.2	12.4	10.9
14.9	15.7	15.1
2 20.5	21.0	20.0
¥ 23.3	24.2	23.7
29.8	30.5	27.6
3 33.1	34.1	32.6
5 37.7	36.4	34.1
5	.3 33.1 .5 37.7	.3 33.1 34.1 .5 37.7 36.4

Near solubility limit

No third phase formation using bmimNTf₂ Nearly 0.2 M TBP inevitable to avoid crud formation

DOAImNTf₂: Unusual Selectivity for Pu(IV) over U(VI)

[HNO ₃] _{eq} /M	Distribution ratio in 0.5 M DOBA in C ₄ mimNTf ₂		$SF = D_{Pu(IV)}/$	Distribution ratio in 0.3 M DOAImNTf ₂ / C ₄ mimNTf ₂		SF =	
	Pu(IV)	U(VI)		Pu(IV)	U(VI)	$\mathbf{D}_{Pu}(\mathbf{IV})$ $\mathbf{D}_{U}(\mathbf{VI})$	
0.5	0.03	0.23	0.13	52	0.015	3466	
1	0.05	0.15	0.33	44	0.02	2200	
3	1	0.13	7.7	30	0.13	230	
4	3	0.15	20	21	0.2	105	
5	5	0.4	12.5	20	0.4	50	

Amide Functionalised RTIL better than Amide itself; extraction trend also different !

Immobilization of FBR waste: Iron Phosphate Glass (IPG)

- HLW of FBR is rich in rare earths and noble metals, not amenable for immobilisation in conventional borosilicate glass (BSG)
- Iron phosphate glass (IPG) is a suitable alternate matrix for the high level waste from FRFR because of the ease of glass formation, high percentage of loading acheivable, lower homogenization time, better chemical durability, and higher density as compared to BSG
- IPG waste form containing simulated FBR HLW was synthesised and characterised at IGCAR using a number of techniques

Comparison of Iron Phosphate Glass with Typical Borosilicate Glass and BSG

	IPG	IPG-	BSG-	BSG
	(our	20wt %	21 wt	[31]
Descention	work)	FR	%	
riopenties		SHLLW	BWR	
		(our	waste	
		work)	[29]	
Glass	783	785	809*	818
transition T				
(K)				
Initial	968	950	-	882
crystallization				
T (K)				
Liquidus T (K)	1198	1191	-	1160
Density (g/cc)	2.9	3.1	3.0	-
Thermal	1.2 [30]	-	0.95	-
Conductivity				
$(Wm^{-1}K^{-1})$				
Longh rate	2.4 x	-	4.2 x	-
(gom ⁻² dou ⁻¹)	10-8		10.6	
(geni day)	[30]			

* Softening temperature measured by dilatometry

Immobilisation of (simulated) Fast Reactor waste in Iron Phosphate Glass

Properties of IPG waste form containing 20 wt % simulated FR waste compared with that of pristine IPG

Characterisation techniques and salient results:

X-ray diffraction : IPG and IPG waste form are amorphous

TGA-DTA and DSC : Characteristic temperatures like glass transition temperature, initial crystallization temperature and liquidus temperature indicate that glass forming ability and glass stability of IPG waste form are similar to that of IPG

Thermal expansion measurements by dilatometry showed that the expansion behaviour of IPG was not altered by the addition of 20 wt % of waste

Conclusion: Good glass forming characteristics and similar thermal behaviour of waste form with IPG indicate that IPG is an attractive candidate as the matrix for FR waste

Immobilization of Cesium in IPG

IPG characterised as a function of cesium loading

Up to 49 wt % Cs₂O loading, IPG remains amorphous, and shows low volatilization (< 0.5 wt % at 1263 K / 4h)</p>

✤ T_g of 29 wt % Cs₂O loaded is 60°C higher than 49 wt % Cs₂O loaded IPG; glass forming characteristics (CCR) are better for 49 wt % Cs₂O loaded IPG

✤ Mössbauer studies: Fe³⁺/Fe is > 0.95 for all glasses (49 wt % Cs₂O : 0.98) : an added advantage since Fe³⁺ acts as a glass former in IPG

Structural (Infrared and Raman spectroscopy) and crystallization studies clearly indicate the pyrophosphate linkage in IPG and cesium loaded IPG

Conclusion: Good glass forming characteristics, high loading (49 wt % Cs₂O) with low volatilization indicate that IPG is a promising matrix to immobilise Cs-137 for use in medical applications

Pyroprocess under development to cater to the metallic fuels programme

Argon atmosphere Containment Box

Electrorefining vessel

U deposit on solid cathode

Distillation furnace chamber

U metal ingot

Engineering Scale Facility for Pyroprocess Studies

OTHER STUDIES

Ambient Temperature Electrorefiner (ATER) for validation of mechanical engineering design and automation and remote handling concepts, including cathode configurations

Operational experience of ATER to be used for designing the **High Temperature Electrorefiner** (HTER) of 10 kg/ batch capacity

Development of actinide draw down process

Direct Oxide Reduction: Electroreduction demonstrated on 100 g scale in CaCl2 melts

Modeling :

Assessment of LiCI-UCI₃ and KCI-UCI₃ binary systems using PARROT module of ThermoCalc: Enthalpy of mixing modelled using a modified form of Surrounded Ion Model

Computational modeling of electrorefiner based on diffusion (DIFAC): Code developed to model anodic dissolution of metal alloys, and validated using data on U, Zr, and U-Zr alloys

India is pursuing closed fuel cycle as an important tool for enabling the growth of a sustainable nuclear power programme

Fast reactors will be a important component of the nuclear energy mix in India in the coming decades

Chemistry aspects of fast reactor fuel cycle, and especially the back end, are being addressed comprehensively

New innovative extraction systems are under development for actinide and fission product recovery

As part of the long term development of metal fuelled FBRs, pyrochemical reprocessing is under development

