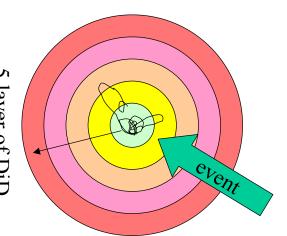
Fukushima-Daiichi NPP Accident

Koji OKAMOTO
The University of Tokyo

okamoto@n.t.u-tokyo.ac.jp

IAEA Safety Fundamentals (SF-1)


from harmful effects of ionizing radiation. to protect people and the environment The fundamental safety objective is

- Principle 1: Responsibility for safety
- Principle 2: Role of government
- Principle 3: Leadership and management for safety
- Principle Justification of facilities and activities
- Principle 5: Optimization of protection
- Principle 6: Limitation of risks to individuals
- Principle 7: Protection of present and future generations
- Principle 8: Prevention of accidents
- Principle 9: Emergency preparedness and response
- Principle 10: Protective actions to reduce existing or unregulated radiation risks

IAEA Safety of Nuclear Power Plant (NS-R-1)

<u>Defense-in-Depth Concept</u>

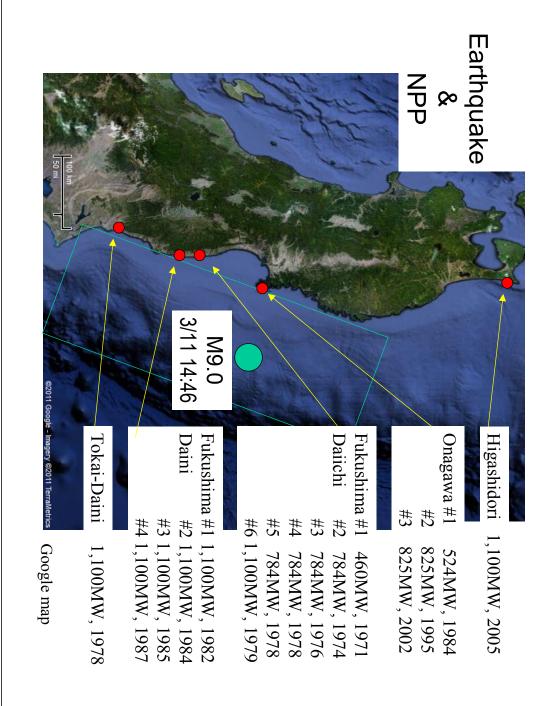
- Prevent deviations from normal operation
- Prevent from escalating to accident
- 3. Prevent core damage or significant off site release
- Mitigate the consequence of accident
- Mitigate radiological consequence

5 layer of DiD

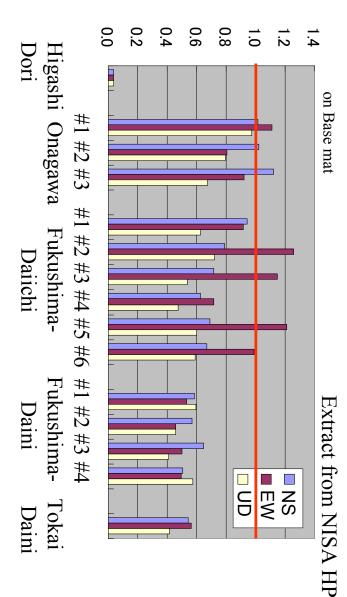
IAEA Safety of Nuclear Power Plant (NS-R-1)

<u>Defense-in-Depth Concept</u>

- Prevent deviations from normal operation
- Prevent from escalating to accident
- Prevent core damage or significant off site release
- Mitigate the consequence of accident
- Mitigate radiological consequence


Design, Operation, Maintenance,...

Anticipated Transient Accident


Design Basis Accident

Sever Accident

Emergency response

Ratio of Measured Maximum Acceleration to Seismic Design Acceleration (Ss)

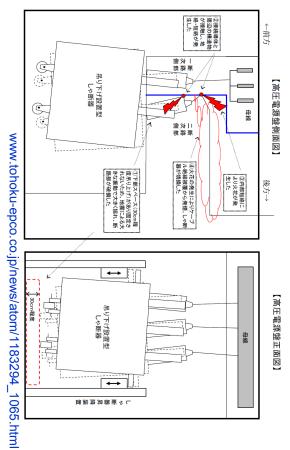
Seismic Design worked well, under current knowledge Important Components have no damage

Seismic Design on Fukushima Daiichi

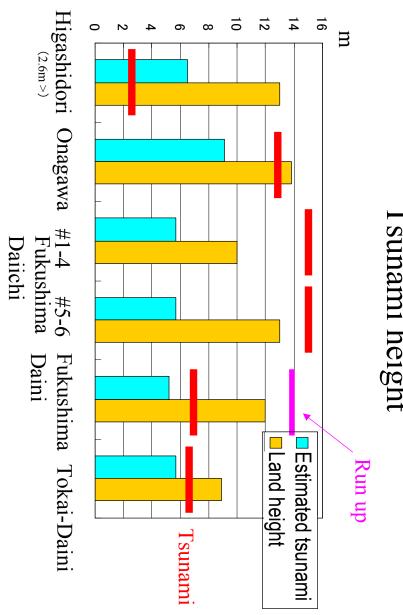
- Seismic Response Analysis
- Almost elastic response for Buildings
- Systems Simulation shows no damages on safety related
- important components Walk down for unit #5 found no damages on
- Plant Parameter Evaluation before Tsunami
- boundaries. Parameter shows no leakages on primary
- cooling systems without any damages Simulation correctly explain the responses of

NISA meeting (Dec. 9, 2011)

Plant has no significant damage by Earthquake


Status of NPPs after Earthquake

Tokai-Daini	#	#	Daini #	Fukushima #1 Full-power Shut-down	#	#	#	21+	Daiichi #	Fukushima #1 Full-power Shut-down	#	#	Onagawa #	
	#	#3	#2	1	费	2	#	#3	12	7	చ	#2	7	0
Full-power	Full-power Shut-down	Full-power Shut-down	Full-power	Full-power	Outage	#5 Outage	Outage	Full-power Shut-down	#2 Full-power Shut-down	Full-power	#3 Full-power Shut-down	Start-up	Full-power	Operation
Full-power Shut-down	Shut-down	Shut-down	Shut-down	Shut-down				Shut-down	Shut-down	Shut-down	Shut-down	Shut-down	#1 Full-power Shut-down	DiD1
Offsite Power lost					Offsite Power lost	Offsite Power lost	Offsite Power lost	Offsite Power lost	Offsite Power lost	Offsite Power lost			non-emerg. M/C Fire	DiD2

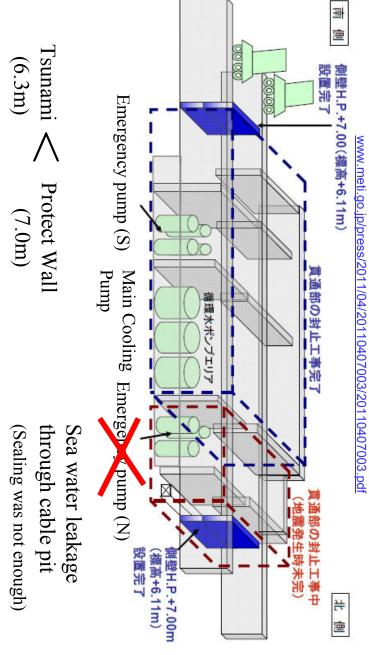

Onagawa after Earthquake

No damage for Class-S System Structure & Component (SSC) A few damages for Class-B & C SSC

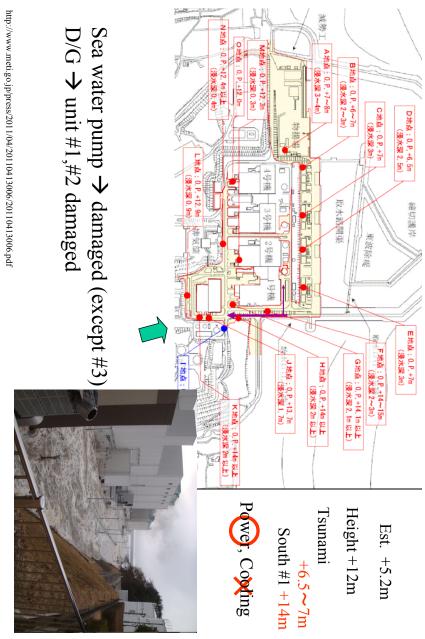
Non-emergent M/C for Unit #1 had a fire

Tsunami height

Design against Tsunami was failed, causing Accidents


Status of NPPs after Tsunami

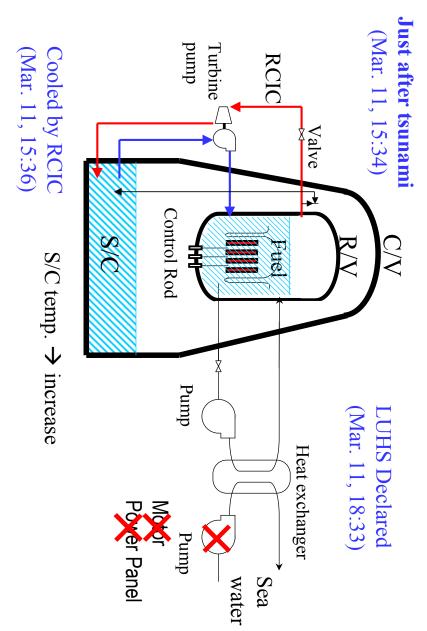
DiD3	
DiD4(A	
<u>≤</u>	
)iD5(Err	
าergeno	
Ō	


		1D/G×	Tokai-Daini	Toka
	LUHS		#4	
			#3	
	LUHS		iini #2	Daini
	LUHS		Fukushima #1	Fuku
	LUHS		#6	
	SBO, LUHS		#5	
Hydr. Exp.	SBO, LUHS		#4	
Core Damage, Hydr. Exp.	SBO, LUHS		#3	
SBO, LUHS Core Damage	SBO, LUHS		Daiichi #2	Dai
Core Damage, Hydr. Exp.	SBO, LUHS		Fukushima #1	Fuku
			#3	
		#2 2D/G ×	#2	
			jawa #1	Onagawa

Tokai-Daini

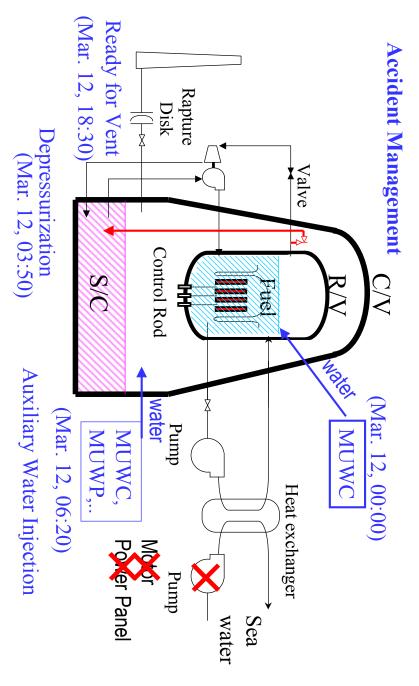
I OKAI-DAIIII

Fukushima-Daini

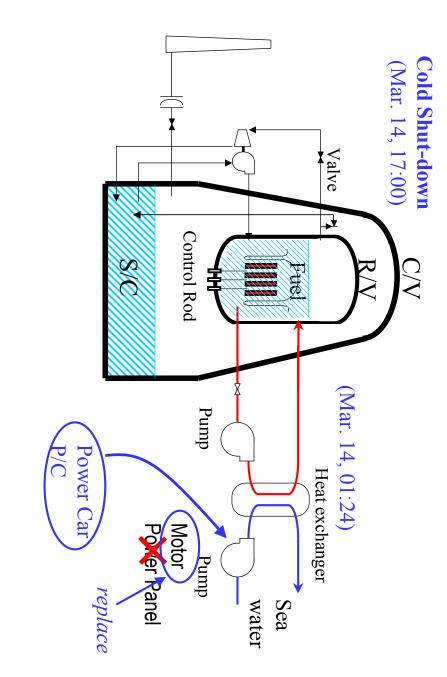


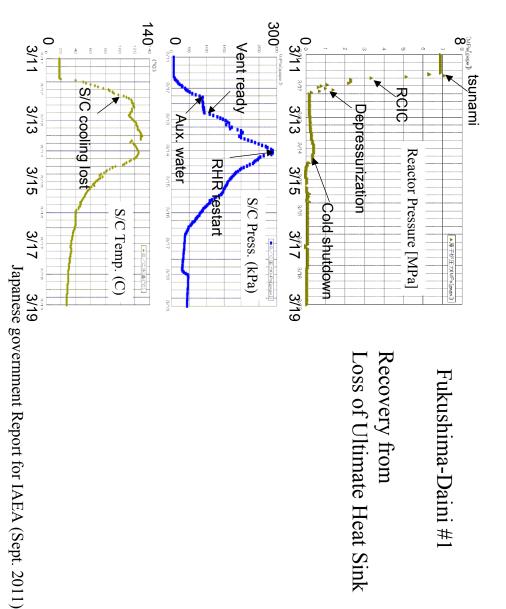
Status of Fukushima Daini after Tsunami

	#1	#2	#3	#4
Offsite Power	0	0	0	0
Emergency D/G A/C: Air-cooled *: cooling pump flooding	×××	× × × * * *	× OC	> * *
M/C (Emergency)	1/3	0	0	0
M/C (non-Emrg.)	0	0	0	0
P/C (Emergency)	1/3	2/3	2/3	2/3
P/C (non-Emrg.)	6/7	4/5	7/7	4/5
DC battery	0	0	0	0
Seawater Pump	×	×	1/2	×


Loss of Ultimate Heat Sink

Fukushima-Daini #1


Loss of Ultimate Heat Sink


Fukushima-Daini #1

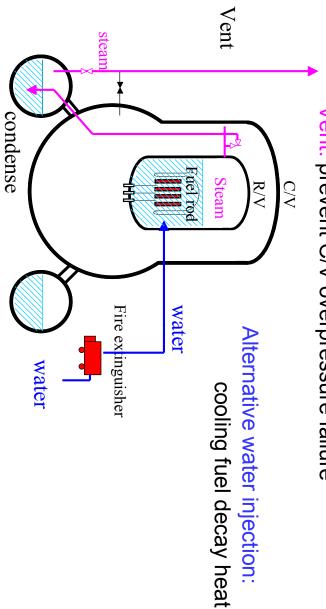
Loss of Ultimate Heat Sink

Fukushima-Daini #1

Fukushima-Daini #1

Loss of Ultimate Heat Sink

Summary for Loss of Ultimate Heat Sink


is a good practice to learn lots of things Accident Management at Fukushima-Daini NPP

- LUHS has relatively large time margin if AC power is available.
- Ņ conditions Complete SBO should be prevented in any
- ယ components should be prepared onsite/offsite. To reduce the recovery term, backup
- 4. waterproof building. Seawater pump should be installed in
- Ġ especially, S/C and Spent Fuel Pool. improving the reliability of heat sink, Air-cooling System might be considered for

Accident Management

(To mitigate SA, all resources should be applied.)

Vent: prevent C/V overpressure failure

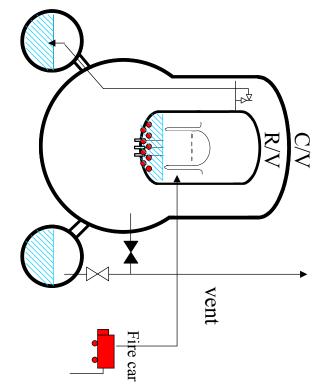
Vent trial for Unit #1

Mar. 11, 15:37 Tsunami

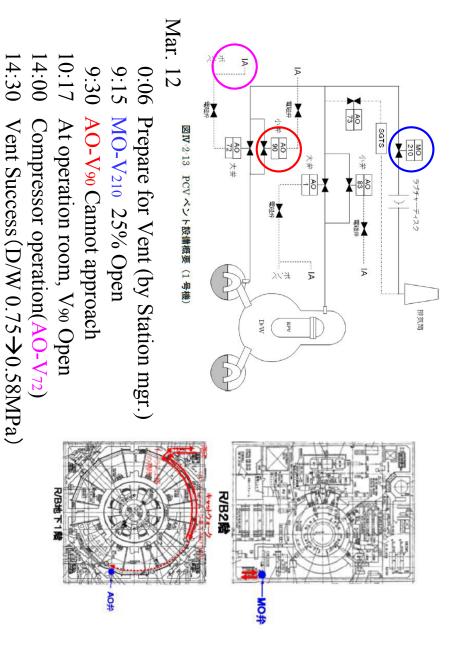
Mar. 12, 00:06

Prepare for Vent

Mar. 12, 05:46 ~ 14:53
Water Injection by


Water Injection by fire extinguisher car

(Total 80ton)

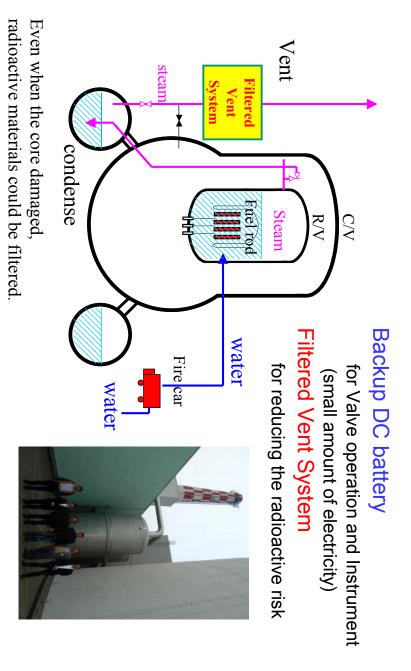

Mar. 12, 15:35 Hydrogen Explosion

Mar. 12, 19:04

Sea water injection

http://www.tepco.co.jp/cc/press/betu11_j/images/110618l.pdf

Fukuichi Live Camera System



Steam were seen for the Vent from 14:30

at 15:35, Hydrogen Explosion at Unit #1

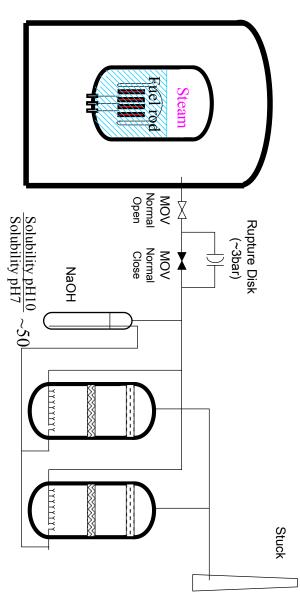
http://www.youtube.com/watch?v=y5FtdES8of0

Summary of Accident Management (Vent)

One of the most important lessons is

Preventing C/V rupture Preventing Radioactive material exhaust

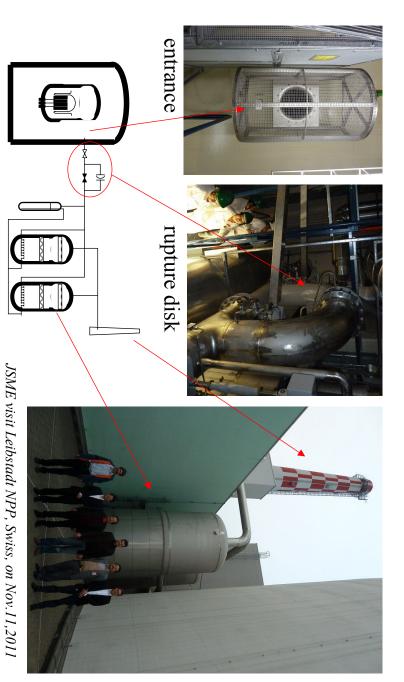
Fukushima Daiichi NPP #2 C/V 7bar + No Vent + C/V rapture C/V 7bar + Vent + H₂ Explosion C/V 6bar + Vent + H_2 Explosion ~3day \sim 3.5day ~1day


Prevent over-pressure C/V rupture + Exhaust of RI and H₂ → Filtered Containment Venting System (FCVS)

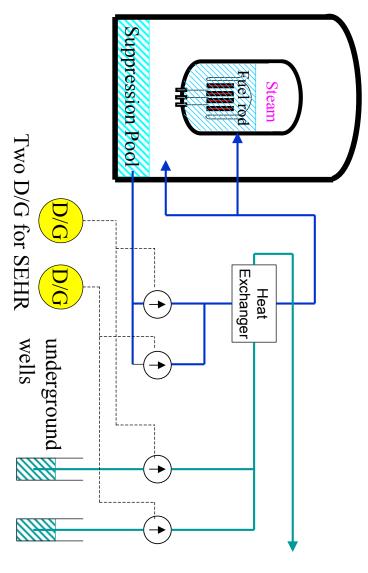
Prevent over-temperature C/V rupture + H₂ leakage → Special Emergency Heat Removal System (SEHR)

JSME visit Leibstadt NPP, Swiss, on Nov.11,2011

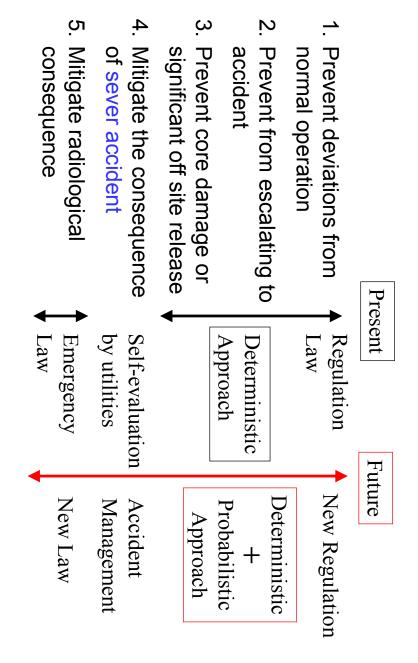
FCVS (Filtered Containment Venting System)


Backfitted on 1992 for DiD4 (mitigation of Sever Accident)

Prevent C/V overpressure failure Capture radioactive materials Feed and Bleed under Long SBO & LUHS


DF > 1000 aerosol> $100 I_2$

FCVS (Filtered Containment Venting System)



SEHR (Special Emergency Heat Removal System)

Backfitted on late '70s for DiD3 (additional C/V cooling) and DiD4 (mitigation of Sever Accident)

Defense-in-Depth and regulation

Regulation system hardly takes new knowledge

- Japanese NRC written in DPJ manifesto had not been discussed more than 2 years after DPJ took government
- Nuclear Facility Installation Guideline is never revised almost
- more than 10 years after the Kobe Earthquake on 1995 Seismic Design Guideline had been revised on 2006,
- new code needs huge efforts for both utilities and regulators In the safety analysis, very old code are still used, because
- than 10 years. Risk-informed Regulation is still under discussion for more
- Safety target was still midterm report around 10 years
- more than 10 years Regulation for Sever Accident is also under discussion for

KAIZEN is most important to sustain the safety.

Lessons Learned from the Accident

- from risk of radiation People and the environment should be protected
- Nuclear Safety should be based on the Defense-in-Depth Concept
- Accident Management should be re-checked with serious viewpoints
- conditions Complete station blackout should be prevented in any
- Alternate AC and DC system should be prepared
- should be prepared To recover Loss of ultimate heat sink, backup components
- Air-cooled System should be considered for cooling diversity
- Filtered Vent might be useful to protect environment
- to keep the nuclear safety Kaizen from the experience should be most important