GLOBAL 2005 International Conference, Tsukuba International Congress Center, Japan

Status & Prospects of Nuclear Power Generation and Fuel Cycles in Korea

Oct., 2005

Kun Jai Lee

Department of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology

1. Introduction

- Overview of Korean nuclear power technology

Table of Contents

- 2. Status of Nuclear Power Generation
- 3. Prospects of Nuclear Power System
 - Plan of new construction of advanced PWR
 - Prediction of demanding energy
 - Prospect of nuclear fuel cycle
- 4. Conclusion
 - Review & Vision of Korean Nuclear System

Brief History of Nuclear Power in Korea

Status of Electric Power

□ Installed Capacity

Electricity Generation

Status of Nuclear Power Plants

Units (MW)

Nuclear Power Plants in Operation

20 units (17,716 MW)

Plant		Reactor Type	Capacity (MW)	NSSS Supplier	Plant A/E	Commercial Operation
Kori (KRN)	#1 #2 #3 #4	PWR PWR PWR PWR	650 587 950 950	W/H W/H W/H W/H	Gilbert Gilbert Bechtel/KOPEC Bechtel/KOPEC	'78.04 '83.07 '85.09 '86.04
Wolsong (WSN)	#1 #2 #3 #4	PHWR PHWR PHWR PHWR	679 700 700 700	AECL AECL/DOOSAN AECL/DOOSAN AECL/DOOSAN	AECL AECL/KOPEC AECL/KOPEC AECL/KOPEC	'83.04 '97.06 '98.06 '99.09
Yonggwang (YGN)	#1 #2 #3 #4 #5 #6	PWR PWR PWR PWR PWR PWR	950 950 1,000 1,000 1,000 1,000	W/H W/H DOOSAN DOOSAN DOOSAN DOOSAN	Bechtel/KOPEC Bechtel/KOPEC KOPEC KOPEC KOPEC KOPEC	'86.08 '87.06 '95.03 '96.01 '02.05 '02.12
Ulchin (UCN)	#1 #2 #3 #4 #5 #6	PWR PWR PWR PWR PWR PWR	950 950 1,000 1,000 1,000 1,000	Framatome Framatome DOOSAN DOOSAN DOOSAN DOOSAN	Framatome Framatome KOPEC KOPEC KOPEC KOPEC	'88.09 '89.09 '98.08 '99.12 '04.07 '05.06

NSSS : Nuclear Steam Supply System, A/E : Architect Engineering

Operating Performance

Evolution of Project Contract Scheme

Development of Standard Model

Benefits of Standardization

Prospect of Energy Demand

Prospect of Electric Power (until 2015)

Nuclear Power Development Plan

6 units (6,800 MW)

Plant		Reactor Type	Capacity (MW)	NSSS & TG Supplier	Plant A/E	Commercial Operation
Shin-Kori	#1	PWR	1,000	DOOSAN	KOPEC	2009. 12
(Shin-KRN)	#2	PWR	1,000	DOOSAN	KOPEC	2010. 10
Shin-Wolsong	#1	PWR	1,000	DOOSAN	KOPEC	2011. 09
(Shin-WSN)	#2	PWR	1,000	DOOSAN	KOPEC	2012. 09
	#3	PWR	1,400	DOOSAN	KOPEC	2012.06
Shin-Kori	#4	PWR	1,400	DOOSAN	KOPEC	2013.06

Fuel Cycle Facilities in Korea

Nuclear Fuel Supply

,

- Uranium for fuel comes from Australia, Canada, the U.K, France, Russia, the U.S and South Africa
- Conversion and enrichment services come from the U.S., the U.K., France

Canada and Russia by long-term contracts

- Fuel fabrication services are fully localized to meet domestic needs
 Korea Nuclear Fuel Company(KNFC)
- KNFC has supplied PWR fuel since 1990 and Candu PHWR fuel since 1987
- KNFC has capacity of 550 t/yr for PWR fuel and 700 t/yr for Candu
 PHWR fuel

Projected Waste Management Plan in Korea

Construction and Operation of Facility for Disposal of Low and Intermediate Level Radioactive Wastes

-Disposal capacity: initial 100,000 drums (final 800,000 drums)

-Operation start year: 2008

-Main Host : Korea Hydro & Nuclear Power Co.,Ltd. (KHNP)

Construction and Operation of Interim Storage Facility for Spent Fuels

- -Storage capacity: initial 2,000 tons (final 20,000 tons)
- -Operation start year: 2016
- -Storage type: to determine later after considering the site condition and the technology development trend (wet or dry type)
- -Main Host : Korea Hydro & Nuclear Power Co.,Ltd. (KHNP)

Projected Waste Management Plan in Korea

Establishment of New Law for LLW Disposal Repository

- Spent fuel storage site separated
- Put in force on June 2005
- More transparent and new process
- Voluntary application of Local government with endorsement of residents through popular referendum
- Incentive offer valued of U.S\$300 Million(and \$8.5million annual fee's)
- Construct proton high energy accelerator near the site
- Headquarters of KHNP will be moved
- Currently 4 local government applied
 popular referendum is planned on Nov. 2
- **Spent fuel storage site**

-will be determined after public consensus

Korean NPP Plan and Spent Fuel Arisings

• Spent Fuel Arisings (End of 2004)

- PWR : 3,397 ton
- CANDU: 3,889 ton

NPP Sites		Storage Capacity (tLl)	Accumulation	
Site name	# of units	Clorage Capacity (10)	(tU)	
Kori	4	2,007	1,415	
Yonggwang	6	2,094	1,140	
Ulchin	6	1,990	842	
Wolsong	4	4,336	3,889	
tota	al	10,427	7,286	

Korean NPP Plan and Spent Fuel Arisings

Prospect of Spent Fuel Generation

Back-End Fuel Cycle Options in Korea

• Options for back-end fuel cycle in the future

- **1** Direct disposal
- (2) **DUPIC** \rightarrow waste disposal
- **③** Pyroprocessing/Transmutation \rightarrow waste disposal

Prospect of Advanced Nuclear Fuel Cycle : KIEP-21

"K : Korea, I : Innovative, E : Environmentally friendly, P : Proliferation resistant"

Projection of Nuclear Electricity Generation up to 2050

Main Assumptions

• Electricity demand per capita : ~6,500 kWh/man/year in 2004

in 2100 : 11,000kWh/man/year(reference), 10,000kWh/man/year(Low), 13,000kWh/man/year(High)

• Nuclear Share : 46.7% in 2020 continues up to 2050

Population : about 50 million in 2020 from the database of Korea National Statistical Office (http://www.nso.go.kr).
 Population increase rate after 2021 is "Zero"

Projection of Nuclear Spent Fuel: (DUPIC+FR) Closed Fuel Cycle Option

GLOBAL 2005 International Conference, Tsukuba, Japan

Review

- Excellent Nuclear Power Generation Capability and Experience
- Current issue
 - : Siting for LLW Disposal Repository and Spent Fuel Storage Problem

"Clean" Korea

