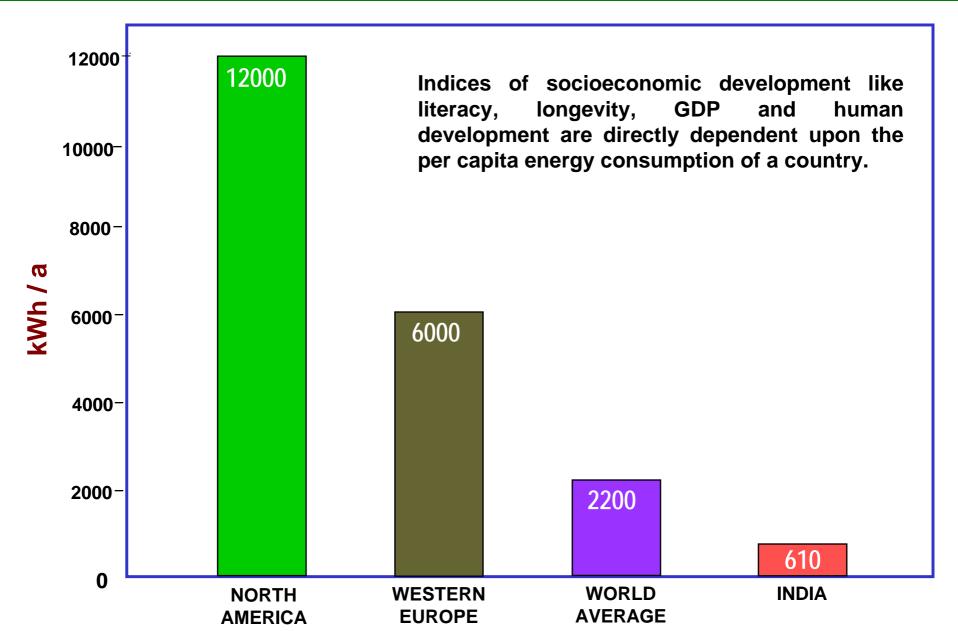
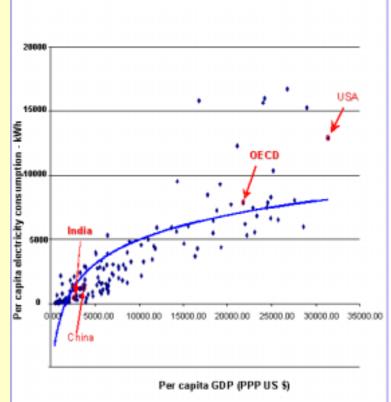

#### **PROSPECT ON THE PROJECTED QUANTITIES OF**

#### **NUCLEAR SYSTEMS IN THE FUTURE**


## **Baldev Raj**

#### Indira Gandhi Centre for Atomic Research Kalpakkam

## India – Population Growth




## Per Capita Electricity Generation Worldwide



## **Energy Growth in India**

- Strong correlation between per capita GDP and per capita electricity consumption.
- **Forecasts point towards a robust** GDP growth over the next 3 to 5 decades.
- A group in DAE studied available information on GDP growth forecasts, population growth, trends with regard to energy-GDP elasticity and electricity intensity of industries and developed a scenario for growth of electricity.
- **Electricity-GDP Elasticity**
- Primary Energy-GDP Elasticity 0.907 (1.3 up to 70's)



- -1.213 (3.0 during 60's)

## Electricity growth rate – a scenario

| Period    | Primary<br>energy %<br>annual growth | <b>Electricity</b><br>% annual<br>growth |
|-----------|--------------------------------------|------------------------------------------|
| 2002-2022 | 4.6                                  | 6.3                                      |
| 2022-2032 | 4.5                                  | 4.9                                      |
| 2032-2042 | 4.5                                  | 4.6                                      |
| 2042-2052 | 3.9                                  | 3.9                                      |

#### <u>Basis</u>

| Current GDP growth rate              | ~ 8 %     |
|--------------------------------------|-----------|
| Projected GDP growth rate up to 2050 | 5 - 7 %   |
| Fall in Primary Energy Intensity &   |           |
| Electricity intensity                | 1.2 % / y |

## **Primary Energy – Cumulative usage**

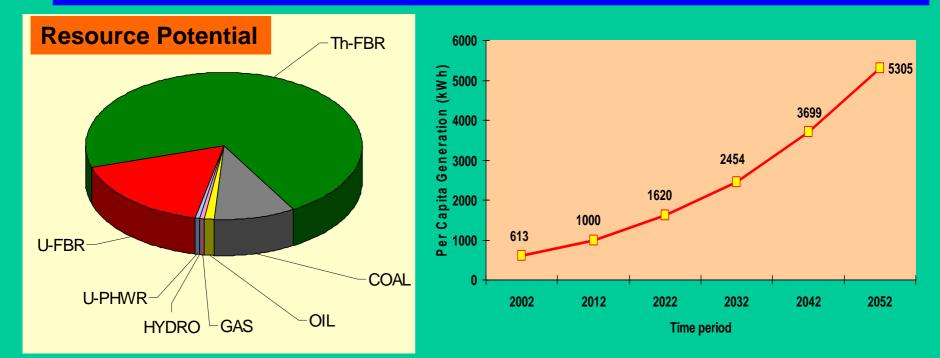
- Cumulative usage of coal by 2052 will be ~ 943 EJ as against domestic mineable reserves of 667 EJ.
- Cumulative hydrocarbon usage will be 912 EJ, projected availability is 511 EJ.
- Cumulative nuclear generation till 2052 will be 246 EJ, hydro will be 212 EJ and non-conventional will be 72 EJ.
- Cumulative primary energy usage will be 2385 EJ. Shortage of ~ 29% of the total.

## **Energy Scenario**

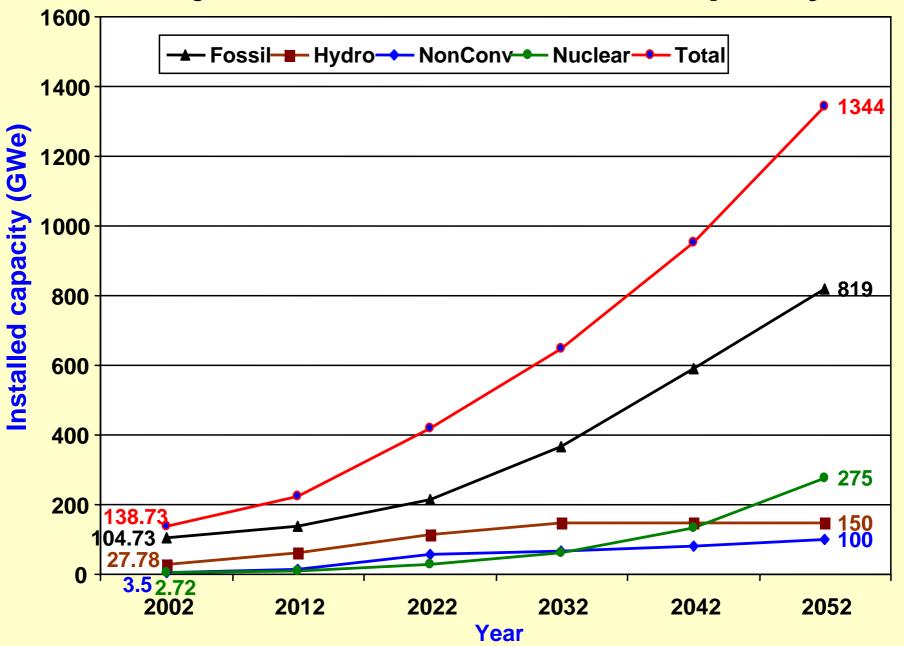
#### Energy Production as on March 2005

Power generation in 2004-05 was 587.7 billion KWh. Thermal, hydro and nuclear contribution were 82.7%, 14.5% and 2.8% respectively.

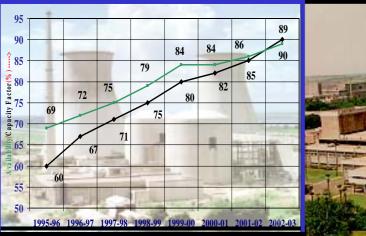
**\*** Total installed capacity (MWe) as on:


|                 |     | March  | <b>Aug. 2005</b> |
|-----------------|-----|--------|------------------|
| Thermal         | -   | 80626  | 81061            |
| Hydro           | -   | 30818  | 31745            |
| Nuclear         | -   | 2720   | 3310             |
| Total           | -   | 114164 | 116116           |
| Renewable       | -   | 2488   | 6158             |
| Total (with wir | nd) | 116652 | 122275           |

## **Indian Energy Growth Scenario**


|                        |       | 2003-04 | 2052   |
|------------------------|-------|---------|--------|
| Electricity Generation | (GWe) | 112.0   | ~ 1344 |
| Nuclear Energy Share   | (GWe) | 2.72    | ~ 275  |
| > PHWR                 | (GWe) | 2.10    | ~ 0    |

Faster Growth is needed to reach the target


FBR with Closed Fuel Cycle is inevitable



## **Projected Installed Power Capacity**



#### **THREE STAGE NUCLEAR POWER PROGRAM**



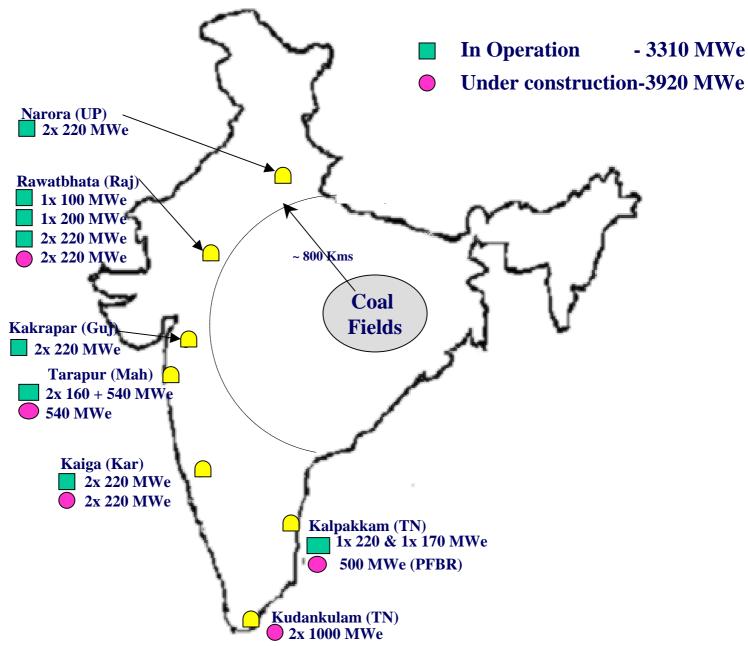
Stage – I PHWRs

- 15- Operating
- 5 Under construction
- Several others planned
- Scaling to 700 MWe
- Gestation period
- being reduced
- POWER POTENTIAL ≅ 10,000 MWe

#### LWRs

- 2 BWRs Operating
- 2 VVERs under construction

Stage - II Fast Breeder Reactors

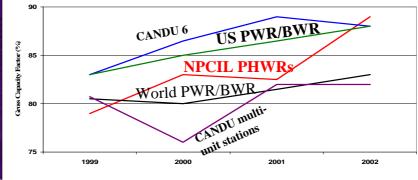

 40 MWth FBTR -Operating Technology Objectives realised

• 500 MWe PFBRconstruction commenced

 POWER POTENTIAL ≅ 540,000 MWe Stage - III Thorium Based Reactors

- 30 kWth KAMINI- Operating
- 300 MWe AHWR- Under Regulatory Examination
- POWER POTENTIAL ≅ Very Large. Availability of ADS can enable early introduction of Thorium on a large scale

## **Nuclear Power Plants in India**




## **Operating Nuclear Power Plants in India**









Participation in IAEA programmes ISO 14001 and 9000 Certification

NARORA





## **X PLAN CAPACITY ADDITION TARGET- 1300 MWe**

## **Performance of Nuclear Power Plants**

| Unit   | Rated capacity<br>(MWe) | Generation (MU)  | Capacity factor % |
|--------|-------------------------|------------------|-------------------|
| TAPS-1 | 160                     | 1276             | 91.0              |
| TAPS-2 | 160                     | 1311             | <b>93.5</b>       |
| RAPS-2 | 200                     | 1321             | 75.4              |
| RAPS-3 | 220                     | 1470             | 76.3              |
| RAPS-4 | 220                     | 1649             | 85.6              |
| MAPS-1 | 170                     | -                | -                 |
| MAPS-2 | 220                     | 1482             | 76.9              |
| NAPS-1 | 220                     | 1237             | 64.2              |
| NAPS-2 | 220                     | 1523             | <b>79.0</b>       |
| KAPS-1 | 220                     | 1250             | 64.9              |
| KAPS-2 | 220                     | 1263             | 65.5              |
| KGS -1 | 220                     | 1515             | 78.6              |
| KGS -2 | 220                     | 1411             | 73.2              |
| TOTAL  | 2670<br>2500***         | <b>16708</b> *** | <b>76.3</b> ***   |

\*\*\* Excluding MAPS-1

For April 2004 - March 2005

## **NPPs Under Construction**



**TAPS 3** 

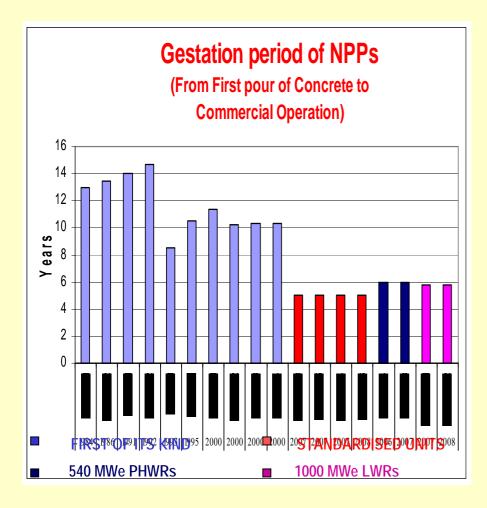




#### Kaiga 3&4



#### **KNPP-1&2**


#### **RAPP 5&6**

**Progress of Ongoing Projects** 

| Project                                          | Capacity<br>MWe | <b>Physical Progress</b><br>June 05 | Commercial<br>Operation          |
|--------------------------------------------------|-----------------|-------------------------------------|----------------------------------|
| <b>TAPP -3&amp;4</b><br>Tarapur ,<br>Maharashtra | 2X540<br>PHWR   | 91.4%<br>Completed                  | U3 – Jan 07<br>U4 – In operation |
| Kaiga -3&4<br>Kaiga<br>Karnataka                 | 2X220<br>PHWR   | 75.8%<br>55.7%                      | U3 – Mar 07<br>U4 – Sep 07       |
| KK -1&2<br>Kudankulam<br>Tamil Nadu              | 2X1000<br>LWR   | 57.3%<br>44.9%<br>Ahead of schedule | U1 – Dec 07*<br>U2 – Dec 08      |
| RAPP -5&6<br>Rawatbhata<br>Rajasthan             | 2X220<br>PHWR   | 66.1%<br>47.2%                      | U5 – Aug 07<br>U6 – Feb 08       |
| <b>PFBR</b><br>Kalpakkam<br>Tamil Nadu           | 500<br>FBR      | Sanctioned in<br>Sep. 2003, ~9%     | <b>Mar -2011</b>                 |

\* EFFORTS ARE BEING MADE TO ADVANCE THIS PROJECT.

## **Construction- eight** units under construction to add 3920 MWe in X & XI plan



**Gestation period being** reduced to nearly half of earlier. For example, TAPP 4 completed in less than 5 yrs. Efforts are also on to complete KK project ahead of schedule

#### **NUCLEAR POWER CAPACITY ADDITION PROGRAMME**

| DETAIL                                                                                                              | CAPACITY<br>MWe | CUMULATIVE<br>CAPACITY (MWe) |
|---------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|
| EXISTING CAPACITY                                                                                                   |                 | 2820                         |
| <b>X-PLAN ADDITION</b>                                                                                              | 1300            | 4120                         |
| PROJECTS UNDER CONSTRUC<br>COMPLETED IN XI -PLAN.KAIGA-4 –220 MWeKK-1&2 – 2X1000 -2000 MWeRAPP-5&6 – 2X220 -440 MWe | CTION AND TO    | BE                           |
| PFBR (Kalpakkam) – 500 MWe                                                                                          | 3160            | 7280                         |
| PROJECTS TO BE TAKEN UP I<br>COMPLETED IN XI –PLANAHWR-300300 MWeLWR-3&4–2X1000-2000 MWe*                           | IN X PLAN AND   | TO BE                        |
| 7NP-1 (PHWR) - 700 MWe\$                                                                                            | 3000            | 10280                        |

\* Depending upon the developments – Access to nuclear fuel and reactors from the international market \$ First of twin unit 700 MWe PHWRs.

#### The programme is to setup 20,000 MWe BY 2020

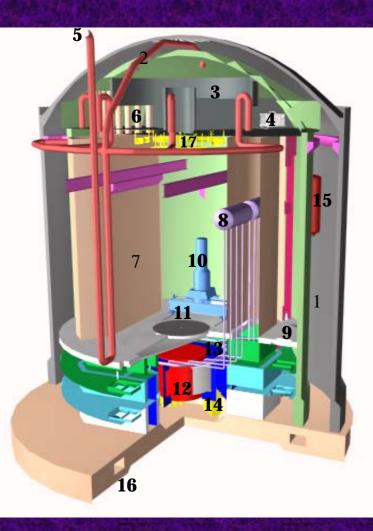
| New starts      | s in the X Plan     |
|-----------------|---------------------|
| <u>Units</u>    | Projected Financial |
|                 | <b>Sanction</b>     |
| 2X1000 MWe LWRs | 2005-06             |
| 2X700 MWe PHWRs | December 2005       |
| 300 MWe AHWR    | 2005-06             |

Necessity of launching pre-project activities for additional 2X1000 MWe LWRs and 2X700 MWe PHWRs to enable project approval and commencement of construction in early XI Plan.

Construction of 4 NPP Govt. of India accorded approval in Sep. 2005

#### **COST REDUCTION MEASURES**

- Reduction of gestation period
- Increasing unit size
- •Standardisation of designs, building a series of reactors of same design
- •Reduction of other input costs (fuel and heavy water)

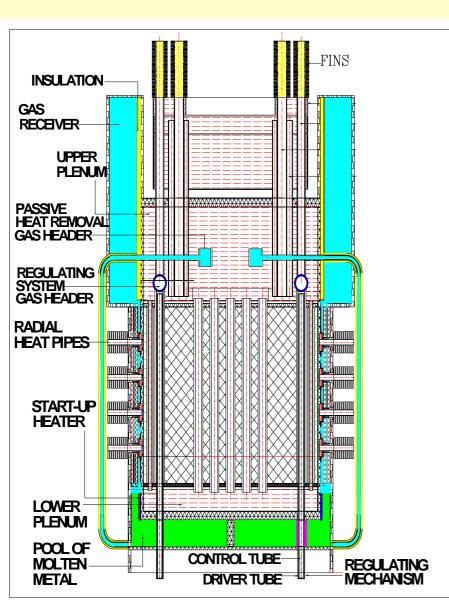

•Pooling of tariff at station level in the first instance and national level eventually will even out the tariffs of old and new stations.

#### **FURTHER NUCLEAR CAPACITY ADDITION**

#### **Additions to Nuclear Capacity**

Import of PWR – Under Consideration 30,000 – 40,000 MWe; Unit size 1000 / 1400 MWe **Phased Manner & Reciprocal Basis Public Acceptance** Safety Features and Safe Operating History **Additional sites** Identified in Central and Western India Inland Sites for 700 MWe & Coastal Sites for 1000 MWe Augmentation at the existing sites – Sharing Infrastructure Long term Energy Security **Three Stage Nuclear Power Program** 

## **ADVANCED HEAVY WATER REACTOR**



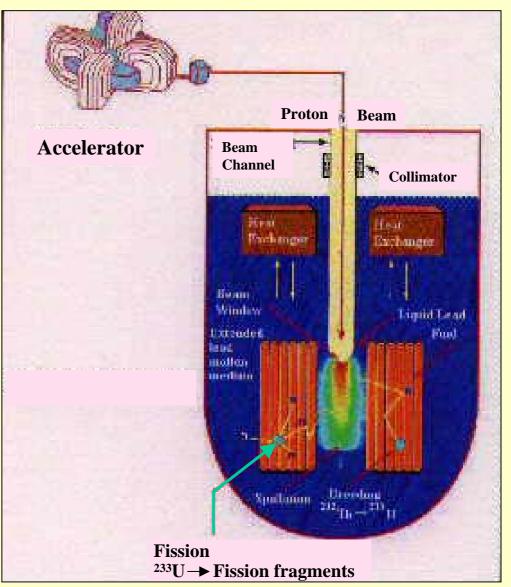

- **1** Secondary Containment
- 2 Primary Containment
- 3 Gravity Driven Water Pool 4 Isolation Condenser
- 5 Passive Containment Isolation Duct
- 6 Vent Pipe
- 7 Tail Pipe Tower
- 8 Steam Drum
- 9 100 M Floor
- **10 Fuelling Machine**
- **11 Deck Plate**
- 12 Calandria with End Shield
- **13 Header**
- **14 Pile Supports**
- **15 Advanced Accumulator**
- 16 Pre Stressing Gallery
- 17 Passive Containment Cooler

• BASIC DATA FUEL : U-233/THORIUM MOX + Pu-239/THORIUM MOX COOLANT : BOILING LIGHT WATER MODERATOR : HEAVY WATER POWER : 300 MW(e) 920 MW(t)

- Structured peer review completed
- Pre-licensing design safety appraisal by AERB being initiated

## **Compact High Temperature Reactor**



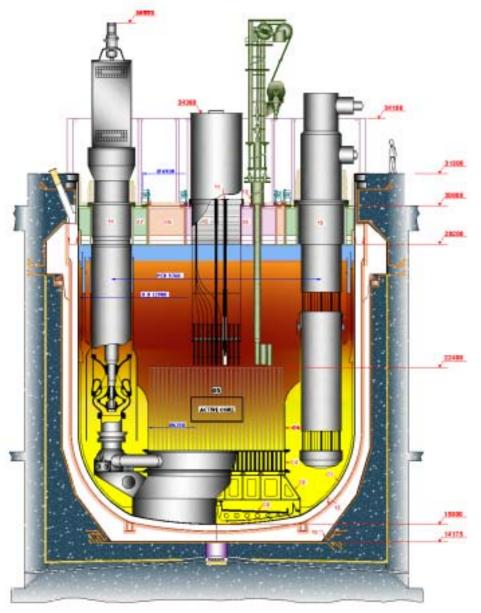

## • Fluid fuel substitutes (Hydrogen)

# Other High Temperature heat applications

### **ACCELERATOR BASED ENERGY TECHNOLOGY**

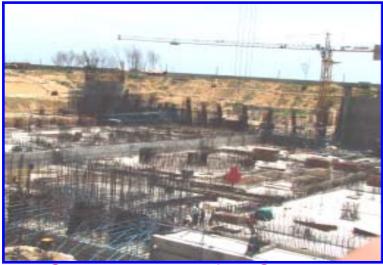
• Growth with Thorium systems

 Transmutation of long lived radionuclides




## LONG TERM R&D EFFORTS NEEDED

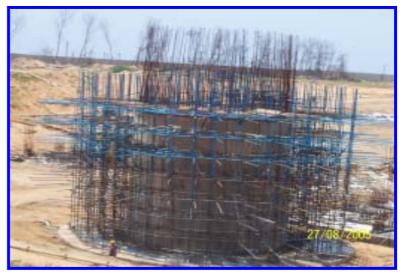
## **Current FBR Programme**


- India started FBR programme with the construction of FBTR
- FBTR is a 40 MWt (13.5 MWe) loop type reactor. The design is same as that of Rapsodie-Fortissimo except for incorporation of SG and TG (agreement signed with CEA, France in 1969).
- FBTR is in operation since 1985.
- 500 MWe Fast Breeder Reactor Project (PFBR) through Indigenous design and construction
  - Govt granted financial sanction for the construction in Sep 2003.
- Construction of PFBR is in progress.

#### **PFBR** Reactor Assembly



| 01 | Main Vessel                 |
|----|-----------------------------|
| 02 | Core Support Structure      |
| 03 | Core Catcher                |
| 04 | Grid Plate                  |
| 05 | Core                        |
| 06 | Inner Vessel                |
| 07 | Roof Slab                   |
| 08 | Large Rotating Plug         |
| 09 | Small Rotating Plug         |
| 10 | Control Plug                |
| 11 | CSRDM / DSRDM               |
| 12 | Transfer Arm                |
| 13 | Intermediate Heat Exchanger |
| 14 | Primary Sodium Pump         |
| 15 | Safety Vessel               |
| 16 | Reactor Vault               |


## **Civil Construction Status of PFBR**



**Overall view of NICB** 



#### NICB at SGB1 side



#### Ventilation stack



#### DGB2 Footing and columns

## **PFBR Architectural View**



#### PFBR will be commissioned by 2009.

#### **PFBR and Its Fuel Cycle : Ensuring Its Success**

- HRD Expertise in multi-disciplinary technologies over entire fuel cycle
- **Design Choice of sound design concepts** 
  - Peer reviews and Regulatory approvals

**Comprehensive R&D** 

- Full scale testing of components in Air & Sodium
- Large Involvement within DAE
- Collaboration with Reputed R&D and

**Academic Institutions** 

**Technology Development with Industrial Partnership** 

National Mission with Full support from academic and R&D institutions

Closing the Fuel Cycle- Industrial Expertise from Fabrication to Waste Management

## **FBRs beyond PFBR**

Design of FBR-500 with improved economy and enhanced safety (one design with possibility of changing to metallic fuel).

Start of construction of two units of FBR-500 (one twin unit) by 2011 at Kalpakkam

Start of construction of two units of FBR-500 (one twin unit) by 2012 at other prospective site

Subsequent Reactors would be 1000 MWe units with metallic fuel.

Fast Breeder Reactors Towards sustainable energy As

2 Million

NIG.

長言

100

ned to

streate

ise process

28

Hollyncos

27.0 2 a race, a linear

fissile materials by animals or plants

SEDERS STIC

a shock of an experience, a line a similar experience, a line bereak selection 2 a race, a line above and born - born und broi above and born - born reactor above hereducing breeder reactor that can create more bosile matrix reactor (b) that can create more bosile reactor (b) that can create more bosile reactor (c) trian