

The Closed Fuel Cycle and Non Proliferation Issues

Jacques BOUCHARD Commissariat à l'Energie Atomique FRANCE

1

A condition for sustainable development of nuclear energy :

- to avoid any geopolitical tension in the use of uranium resources

to reduce the burden associated to long term waste management

- to burn all fissile elements, thus offering a theoretically good proliferation resistance.

Nonproliferation : to burn or to bury

Non Proliferation Issues

Several issues related to the closed fuel cycle:

- reprocessing plant implementation
- plutonium or other materials on shelves
- transportation of plutonium.

Reprocessing, the French industrial experience

More than 15 000 Tons of fuel reprocessed at La Hague UP2 & UP3 plants

1600 tons/year reprocessed since 1995

Reprocessing, the French industrial experience

Low environmental impact, in constant decrease

MOX fuel fabrication

œ

100 tHM/year of MOX fuel manufactured at MELOX Plant

Since 1987, 1800 MOX fuel assemblies delivered by Fragema

Recycling plutonium in LWR

THE EXPERIENCE WITH MOX FUEL

20 French, 2 Belgian, 3 German reactors loaded with MOX

2 Reactors (Cruas 3 & 4) loaded with reprocessed uranium

Fuel Cycles and Proliferation Resistance

Classical PUREX/MOX strategy

- European/Japan approach / implemented by national companies
- Risk of proliferation associated to current industrial treatment and recycling is not underestimated today (meets IAEA / Euratom controls and requirements)
- Until now, no wrong use of nuclear materials coming from commercial treatment and recycling
- Civilian Pu is not attractive for making a nuclear head. HEU is more attractive and affordable than Pu, enrichment technologies are easier to afford than treatment technologies and processes
- Closed cycles (Vs Once-through and spent fuel geological disposal) : a better option to recycle and burn Pu (under today's IAEA control) than to leave « Pu mines » to our future generations

Light Water Reactors : Generation III

Gen IV : paves the way for a sustainable nuclear energy

Ensure energy needs are met in the long term without emitting greenhouse gases

Gradual improvements

- > Economic competitiveness
- Safety and reliability

Significant steps forward:

- Saving of natural resources
- Waste minimization
- Security: non-proliferation, physical protection

> An opening to other applications:

- > High temperature heat for industry
- Hydrogen vector
- Drinking water

œ

- A key problem for future deployment of nuclear power
- Direct disposal of spent fuels cannot be a sustainable solution
- To develop closed fuel cycles requires technologies and organization
- Non proliferation issues should be considered from the beginning
- Global recycling of all the actinides appears the best solution and is a requirement for future fast reactors

13

Fast Reactors : Waste minimization

14

SFR Sodium-Cooled Fast Reactor

SUPERPHENIX

œ

A 1200 MWe plant built at Creys-Malville (France) First criticality: 1985; Shutdown: 1997

GFR Gas-Cooled Fast Reactor

Gen IV Systems based on a global actinides recycling

- A drastic minimization of ultimate wastes :
 - very small volumes, heat reduction
 - hundreds of years compared to hundreds of thousands
- An optimal use of energetic materials
- An increased resistance to proliferation

Grouped Actinides Extraction : the GANEX Process

The Closed Fuel Cycle : A Path Forward

In the short term

- Mono-recycling of plutonium in existing light water reactors:
 - to limit the growth of plutonium inventory,
 - to allow the management of ultimate waste from uranium spent fuels,

- to concentrate in MOX spent fuels the plutonium available for future deployment of fast reactors

- existing industrial reprocessing plants,
- an already large experience with MOX fuels,
- plants operated under international safeguards.

The Closed Fuel Cycle : A Path Forward

In the near future

œ

- Improvements with Gen III light water reactors:
 - more flexibility for the use of MOX fuels,

- possibility of reducing the plutonium inventory if the deployment of fast reactors is delayed.

- Demonstration of the potential of fast reactors:
 - for burning plutonium and other actinides,
 - Phenix and Superphenix experience,
 - a full scale demonstration in Monju...
- Design of Gen III industrial plants for treatment and recycling:
 - The only end-product should be a reactor fuel

21

The Closed Fuel Cycle : A Path Forward

In the longer term

œ

- Deployment of Gen IV fast reactors:
 - initially fueled with plutonium and minor actinides coming from the treatment of MOX spent fuels,
 - breeding gain adjusted according to the needs of nuclear energy.
- Industrial implementation of the global actinide recycling:
 - no more separated elements (plutonium or others),
 - ultimate waste containing essentially fission products,
 - transportations limited to highly radioactive fuels
- Safeguards measures mainly oriented towards:
 - The accountancy of fuels,
 - The integrity of treatment processes.