Measurement of activation cross section of (n, p) and (n, α) reactions in the energy range of 3.5 to 5.9 MeV using a deuterium gas target

Masataka FURUTA^{1,*}, Itaru MIYAZAKI¹,

Hiroshi YAMAMOTO¹, Michihiro SHIBATA², Kiyoshi KAWADE¹

¹ Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

² Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

Abstract

Activation cross sections of (n, p) and (n, α) reactions were measured by means of activation method in the neutron energy range of 3.5 to 5.9 MeV using a deuterium gas target. The irradiated target isotopes were ²⁷Al, ^{28, 29}Si, ⁴¹K, ⁵¹V, ⁶¹Ni, ⁶⁵Cu, ^{64, 67}Zn, ⁶⁹Ga, ⁷⁹Br, ⁹²Mo and ⁹³Nb. The values of the ²⁹Si (n, p) ²⁹Al, ⁶⁷Zn (n, p) ⁶⁷Cu, ⁶⁹Ga (n, p) ⁶⁹mZn, ⁷⁹Br (n, p) ^{79m}Se, and ⁶⁹Ga (n, α) ⁶⁶Cu reactions were obtained for the first time. For the corrections of neutron irradiations, neutron spectra and mean neutron energies at the irradiation positions were calculated. A systematics of the (n, p) reactions at the neutron energy of 5.0 MeV in the mass range between 27 and 92 were proposed for the first time. The systematics can predict the cross sections within an accuracy of a factor of 1.6.

 $E_{\it cut-off}$ is neutron cut-off energy separating main peak and background components; E_{max} is maximum energy in the emission neutrons; $\phi(E_i)$ and $\sigma(E_i)$ are neutron flux and cross section when emission neutron energy is E_{i}

93 Nb (n, α)	18-40
115 In (n, n') ^(a)	20-31
(a) Standard reaction	used in this work

38-74

 69 Ga (n, α)

References [1] T. Shimizu, H. Sakane, M. Shibata, K. Kawade, T. Nishitani, Ann. Nucl. Energy 31, 975 (2004).

T. Shimizu, H. Sakane, M. Shibata, K. Kawade, T. Nishitani, Ann. Nucl. Energy 31, 1883 (2004).
T. Shimizu, H. Sakane, S. Furuichi, M. Shibata, K. Kawade, H. Takeuchi, Nucl. Instr. Methods A527, 543 (2004)

[4] T. Shimizu, I. Miyazaki, K. Arakita, M. Shibata, K. Kawade, J. Hori, T. Nishitani, Ann. Nucl. Energy 32, 949 (2005) [5] V. N. Manokhin, INDC(CCP)-398 (1996)

[6] M. Furura, T. Shimizu, I. Miyazaki, M. Shibata, K. Kawade, Ann. Nucl. Energy, subn