2006Symposium on Nuclear Data 25 January, 2007

Recent Activities of MA Cross-Section Measurements

JAEA S. Nakamura, M. OHTA, and H. Harada *Kyoto Univ.* T. Fujii and H. Yamana

High Level Waste (HLW)

Fission Products (FP) ⁹⁹Tc, ¹²⁹I,¹³⁷Cs, ⁹⁰Sr, ¹²⁹I....

Minor Actinides (MA) ²³⁷Np, ²⁴¹Am, ²⁴³Am, ²⁴⁴Cm....

Public Acceptability of Nuclear Power Reactors Waste Management Environment

Cross Section Measur.

Nuclear Transmutation

Activation Method
Time-Of-Flight
Prompt γ-rays
..... etc.

2006 Symposium on Nuclear Data

Chart of the nuclides

	ರ _m (b)	თ _g (b)	σ _{m+g} (b)
JENDL-3.3	-	_	76.7
Mughabghab	71.3 ± 1.8	3.8 ± 0.4	75.1 ± 1.8
Letourneau	—	5.2 ± 1.7	81.8 ± 3.9
Schuman	—	5.9	-
lce	80	4.3	84.3
Street	50	_	_

Partial Decay Scheme of ²⁴³Am

2006 Symposium on Nuclear Data

²⁴³Am Sample for irradiation @KUR

Irradiation capsule for Hyd.

α -ray spectrum of irradiated ²⁴³Am sample

Analysis of effective cross-section

Results of effective cross section for the ${}^{243}Am(n,\gamma){}^{244m+g}Am$ reaction

	$\hat{\sigma}_{_{m+g}}$
This Work*	174.0 ± 5.3
JENDL-3.3 (2002) 150
Mughabghab (1984) 158 ± 7

*M.Ohta et al.: J.Nucl.Sci.Technol.,43, 1441, (2006).

- [•] Problem of decay heat ²⁴²Cm (163 day)
- Discrepancies among the reported data: σ_0 ~ more than 20%

	Refernces	Year	σ ₀ (b)	I ₀ (b)
	Maidana et al.	(2001)	602 ± 9	1665 ± 91
	Fioni et al.	(2001)	636 ± 46	
	Shinohara et al	. (1997)	768 ± 58	1694 ± 146
	Gavrulov et al.	(1977)	780 ± 50	
	Harbour et al.	(1973)	748 ± 20	1330 ± 117
	Bak et al.	(1967)	670 ± 60	2100
2006 Symposiu	Deal et al.	(1964)	770	

Partial Decay Scheme of ²⁴¹Am

²⁴¹Am Samples for irradiation @KUR

Measurement of sample

20 Days Cooling after Irrad.

α -ray spectrum of irradiated ²⁴¹Am sample

Modifying the Westcott's convention

$$\frac{R}{\sigma_0} = \phi_1 G_{th} + \phi_2 \cdot S_0 G_{epi}$$

for irradiation without a Cd shield,

$$\frac{R'}{\sigma_0} = \phi'_{I}G_{th} + \phi'_{2} \cdot s_0 G_{epi}$$

for irradiation with a Cd shield. where

$$\boldsymbol{S}_{o} = \sqrt{\frac{4}{\pi}} \cdot \frac{\boldsymbol{I'}_{o}}{\boldsymbol{\sigma}_{o}}$$

 I_0 ' is the resonance integral after subtracting the $1/\upsilon$ component

Resonance Integral I_0

 $I_0 = I_0' + 1.006 \sigma_0$ for cut-off energy of 0.1 eV

Results of σ_0 and I_0 for the ²⁴¹Am(n, γ)^{242g}Am reaction

tati	σ ₀ (b)	<i>I</i> ₀ (b)	Cut-off E
This Work Tente	628 ± 22	3.5 ± 0.3 k	0.1eV
JENDL-3.3 (2002)	639.4	1456	
Maidana et al. (2001)	602 ± 9	1665 ± 91	0.5eV
Fioni et al. (2001)	636 ± 46		
Shinohara et al(1997)	768 ± 58	1694 ± 146	0.5eV
Gavrulov et al. (1977)	780 ± 50		
Harbour et al. (1973)	748 ± 20	1330 ± 117	0.369eV
Bak et al. (1967)	670 ± 60	2100	
Deal et al. (1964)	770		

Summary

 $\begin{array}{ll} \cdot {}^{241}\text{Am}(n,\gamma){}^{242g}\text{Am Reaction:} \\ \sigma_{0g} = 628 \pm 22(\text{b}), \ \ I_{0g} = 3.5 \pm 0.3(\text{kb}) & \text{Ec=0.107eV} \end{array}$ $\begin{array}{ll} \cdot {}^{243}\text{Am}(n,\gamma){}^{244m+g}\text{Am Reaction:} \\ \sigma_{eff} = 174.0 \pm 5.3(\text{b}) & \text{in Hyd.}@\text{KUR} \end{array}$

• Evaluated data for ²⁴³Am is 13% smaller than the present result.

JAEA's Data for MA Cross-Sections

Nuclide	Half-life	Past Data (Author, Year)	JAEA Data	References
²³⁷ Np	2.14 × 10 ⁶ y	σ ₀ = 158 ± 3 b I ₀ = 652 ± 24 b (Kobayashi 1994)	$\sigma_0 = 141.7 \pm 5.4 \text{ b}$ $I_0 = 862 \pm 51 \text{ b}$ (2003) $\sigma_0 = 169 \pm 6 \text{ b}$ (2006)	Katoh <i>et al</i> ., <i>JNST</i> , 40(2003) Harada <i>et al</i> ., <i>JNST</i> ,43,No11(2006)
²³⁸ Np	2.1 d	<u>No Data !</u>	σ _{eff} = 479 ± 24 b (2004)	Harada <i>et al., JNST</i> , 41(2004)
²⁴¹ Am	432 y	$\sigma_{0g} = 768 \pm 58 \text{ b}$ $I_{0g} = 1694 \pm 146 \text{ b}$ (Shinohara 1997)	$\sigma_{0g} = 628 \pm 22 \text{ b}$ $I_{0g} = 3.5 \pm 0.3 \text{ k} \text{ b}$	Nakamura <i>et al</i> ., <i>JNST</i> , to be submitted
²⁴³ Am	7370 y	$\sigma_{0m} = 80 \text{ b}, \sigma_{0g} = 4.3$ $\sigma_{0m+g} = 84.3 \text{ b}$ (Ice 1966)	σ _{eff} = 174.0 ± 5.3 b (2006)	Ohta <i>et al.</i> , <i>JNST,43,No.12</i> (2006)