話題・解説 (III)

使用済高速炉燃料の崩壊熱の測定と評価

核燃料サイクル開発機構 大洗工学センター 実験炉部 前田 茂貴*、大川内 靖、青山 卓史 *maeda-s@oec.jnc.go.jp

1. 緒 言

崩壊熱とは、放射性物質の崩壊によって生じる熱である。放射性物質はα線、β線ある いはγ線などの放射線を放出して崩壊するが、この放射線のエネルギーは周辺の物質に吸 収されて、最終的には熱に変わる。

この崩壊熱を発生源として分類すると、以下の3つに分けられる。

① 核分裂生成物(Fission Product: FP)の崩壊熱

核分裂に伴って発生する FP は、核分裂時の運動エネルギーを失い運動を停止した 後でも、放射性崩壊しながら放射線を放出し続ける。原子炉の停止直後では、運転 中の出力の 7~8%もの熱を放出する。FP の半減期から、原子炉停止直後から約 10 年以内の冷却期間において重要とされている。

② アクチニド核種の崩壊熱

核燃料核種の中性子核反応により生成した高次のアクチニド核種が放射性崩壊(多 くがα崩壊)しながら放射線を放出し続ける。原子炉の炉型、燃料組成や燃焼度に 大きく依存するが、一般的に長寿命核種の寄与が大きく、冷却期間が数 10 年以上 では崩壊熱の主成分となる。使用済燃料の再処理や輸送・貯蔵などにおいて重要と されている。ただし、原子炉停止後の数 10 日間においては、U-238 の中性子捕獲 反応によって生成した U-239 (半減期:23.5分)、Np-239 (半減期:2.35 日)のβ、 γ崩壊熱が主である。

③ 原子炉構造材等の放射化物の崩壊熱

原子炉構造材が中性子核反応により、放射化した物が放射性崩壊しながら放射線を 放出し続ける。核分裂炉の場合では、①の FP 崩壊熱の数%程度でありほとんど無 視できる。核融合炉の場合などでは、トリチウム以外の崩壊熱はすべて構造材の放 射化によるものである。

したがって、崩壊熱の評価は原子炉の通常運転停止時、事故時、使用済燃料及び廃棄 物の処理や輸送・貯蔵の熱設計等で非常に重要である。

この崩壊熱の評価は、崩壊熱総和計算法に基づく ORIGEN2 等の計算コードが一般的で ある。崩壊熱は、核種の崩壊データ、放出エネルギー、核分裂収率等の膨大な核データ (ライブラリー)を用いて、ある時間時点での個々の不安定核種の存在量、単位時間に おける崩壊イベント数、β線、γ線の平均エネルギーを崩壊チェーンごとに求め、その総 和を取ることにより求まる。この総和計算法においては、核データに実測値や理論的な 推論値を用いており、その信頼性が非常に重要である。そのため、崩壊熱総和計算の結 果は、積分測定値と比較され、信頼性や精度の議論がなされる。測定は、ウランやプル トニウムサンプルを実験炉炉心で照射し、取り出し後の放出エネルギー(発熱量)の時 間経過を、β線成分、γ線成分に分けて測定する場合が多い。両成分の和が崩壊熱となる。 中でも東大弥生炉での測定は、精度や網羅性の観点から評価が高い。この種の測定では、 照射時間が冷却時間に比べ非常に短い場合がほとんどで、瞬時照射測定とよばれる。こ れらは、一般的に個別核種の核データの精度検証に用いられ、また比較的短い時間スパ ンにおいて議論される。一方、原子炉や使用済燃料の輸送、貯蔵設備等においては、数 日から数年、数十年の時間スパンでの集合体や炉心レベルの崩壊熱評価が、原子炉冷却 系、使用済燃料の取扱・貯蔵・保管設備等の熱設計において重要である。

高速実験炉「常陽」では、世界的にも例の少ないオンサイトで非破壊のまま実際の使用済混合酸化物(MOX)燃料の崩壊熱をカロリメーターにより測定する装置を開発し、 測定データを蓄積してきた^[1]。本稿では、炉内移動がなく、照射条件が精度よく評価できる MK-II 燃料集合体について、原子炉容器内の燃料貯蔵ラックで冷却させることなしに 取出して、冷却期間 40 日から 749 日まで測定し、ORIGEN2 による崩壊熱解析結果との 比較により、発熱計算の誤差要因を検討した。

2. 使用済燃料の崩壊熱の測定

2.1 測定装置

「常陽」の使用済燃料集合体は、ナトリウムを洗浄した後に脱塩水を入れた缶詰缶に 封入され、缶詰缶は使用済燃料水冷却池の貯蔵ラックに保管される。崩壊熱測定装置は、 この缶詰缶を収納する測定容器、測定容器に冷却水を循環させる水循環ポンプと配管、 冷却水温度を測定する測温抵抗体、冷却水の循環量を測定する流量計及び測定データを 処理する小型計算機システムで構成される。崩壊熱測定装置の系統図を図1 に示す。本 装置は、「常陽」原子炉付属建家の使用済燃料水冷却池の壁面に設置され、使用済燃料集 合体を缶詰缶ごと測定容器に装荷して崩壊熱を測定する。 使用済燃料の崩壊熱は、測定容器内の冷却水の出入口温度差と流量及び比熱から求ま るヒートバランスにより測定する。崩壊熱測定装置を循環する冷却水の出入口温度は、 入口側と出口側のそれぞれ 2 箇所に設置した白金測温抵抗体の温度計で、また、冷却水 流量は測定容器入口側に設置したオーバル歯車式容積流量計で測定する。測定は自然循 環弁を閉じた後に冷却材流量を設定し、約5時間後に温度及び流量が平衡した状態で 30 分間のデータの平均を測定値とする。

2.2 崩壊熱の測定

使用済燃料集合体の崩壊熱 Q_D (W) は、測定装置の冷却水出入口温度差 ΔT (°C)、 冷却水の流量V (kg/s) と比熱 C_P (kcal/kg°C)及びエネルギー変換係数F (4.187×10³ W・s/kcal)により次式で表されるヒートバランスから求めた。

$$Q_D = FC_P \Delta T V A_S A_{\gamma} \tag{1}$$

(1)式において、*A_s*は測定装置からプール水への放熱による発熱損失を補正する係数で ある。また、*A_y*は使用済燃料から放出される放射線のうち、装置外に漏れて測定装置の ヒートバランスに寄与しないγ線による発熱分を補正する係数である。*A_s、A_y*の評価方 法の詳細を以下に述べる。

2.3 模擬発熱体による測定装置の校正

 A_s を求めるため、電気ヒータを内蔵した缶詰缶の模擬発熱体を用いて崩壊熱測定装置の校正試験を行った。ここで、 A_s は電気ヒータによる入熱量 Q_h と測定装置のヒートバランスから得られる除熱量 Q_m の比で定義される ($A_s = Q_h / Q_m$)。

今回の測定で想定される崩壊熱の範囲 200W から 1400W において較正曲線の精度を向 上させるため、十分な測定点数を取得することとし、冷却材流量を 0.5ℓ/min に固定して 発熱量と除熱量の関係をプロットした。また、崩壊熱が 250W 以下(冷却期間で約 500 日以上)の範囲については、測定誤差を低減させるため、出入口温度差を大きくするよ う低流量 0.3ℓ/min での試験を実施した。

較正試験結果を図2に示す。 Q_m は全ての流量範囲で Q_h より12~19%程度小さいが、 両者は良好な直線関係を示し、最小二乗近似で求まる比例係数 A_s は 0.5 ℓ /min で 1.115、 0.3 ℓ /min の場合で 1.185 であった。

2.4 測定装置外への放射線漏洩の補正

使用済燃料の崩壊熱は、核分裂生成物(Fission Products: FP)、アクチニド及び構造材 の放射化物からの放射線による発熱で生じる。これ以外に、水中体系での減速中性子等 による誘導核分裂の発熱及び中性子捕獲反応で生ずる高エネルギーγ線発熱も考えられる が、ORIGEN2^[2,3]による計算では、その発熱量は使用済燃料集合体 1 体あたり 5×10^{5} W 程度であり、本測定においては無視した。

使用済燃料が放出する放射線のうち、α線及びβ線は飛程が短いため、そのエネルギー は全て測定装置内での発熱に寄与するが、γ線は透過力が大きいため、その一部は装置外 に漏れ、測定装置のヒートバランスに寄与しない。そこで、測定装置外でのγ線発熱によ る損失割合を以下のように評価し、*A_y*として(1)式の発熱量を補正した。

まず、ORIGEN2 により、それぞれの測定対象集合体のγ線強度を求め、モンテカルロ 計算コード MCNP-4B^[4]を用いて、使用済燃料集合体から測定装置のヒートバランスに寄 与しないγ線による発熱量を計算した。γ線源は燃料スタック部のみとし、燃料集合体のモ デル化にあたってはラッパ管内の燃料ペレット、被覆管及び水は均質化した。組成は炉 心管理コードシステム MAGI^[5](炉定数:JFS-3-J3.2R^[6])の燃焼計算結果を用いた。γ線用 の断面積は MCNP-4B 付属の MCPLIB を用いた。測定容器外側へ透過するγ線による発熱 量は外に漏れるγ線を空間、エネルギーについて積分して算出した。この漏洩γ線による発 熱量と崩壊熱のうちのγ発熱の比をγ線透過率とした。

FP や構造材の放射化物の崩壊熱は、γ線及びβ線による発熱が支配的なため、JNDC ラ イブラリー^[7]で与えられている核種ごとのγ線とβ線のエネルギー(\overline{E}_{γ} 及び \overline{E}_{β})からγ線 成分の相対比($\overline{E}_{\gamma}/(\overline{E}_{\gamma} + \overline{E}_{\beta})$)を求め、これに ORIGEN2 による FP 核種ごとの崩壊熱 ($\overline{E} = \overline{E}_{\gamma} + \overline{E}_{\beta}$)を乗じ、各核種の総和を全崩壊熱で除することによって算出した。構 造材によるγ線発熱の割合も同様に算出した。アクチニドの崩壊熱はα崩壊による発熱が 支配的であり、γ線による発熱は FP に比べ小さいので無視した。この全崩壊熱に占めるγ 線発熱の割合にγ線透過率を乗じて測定装置外でのγ線発熱による損失割合とした。

この結果、測定装置外でのγ線発熱による損失割合は、図3に示すように燃焼終了後40 日から729日で約9%から2%であり、冷却期間とともに減少する。これは、冷却が進む につれて高エネルギーのγ線を放出する核種が減衰し、γ線のスペクトルが軟らかくなり透 過率が小さくなるためである。また、全崩壊熱に対する FP の発熱(γ線発熱が支配的) 割合が減少することに加え、FP や構造材の全放射能に占めるγ線の割合(γ/(γ+β))が冷 却とともに減少することも原因である。

2.5 崩壊熱の測定精度

本装置の測定では、2.3 節で述べた模擬発熱体による較正試験で得られた発熱損失補正 と 2.4 節で述べた測定装置外への漏洩γ線による発熱損失補正を行うことにより、系統誤 差は無視できる。よって、本研究では崩壊熱測定装置の各機器の測定誤差及び測定値の 変動のみを考慮し、温度計、流量計とこれらの信号変換器及び記録計の各誤差及び測定 値の変動の自乗和の平方根を、温度及び流量測定系それぞれの誤差とした。

温度測定系及び流量測定系の誤差評価結果を図4,5に示す。ただし、測定値の変動は

考慮していない。温度測定系の誤差は、冷却水の出入口温度差 ΔT が 5 $^{\circ}$ の時で約 9%であり、 ΔT が小さいほど誤差は大きくなる。また、流量測定系の誤差は、冷却水の流量が 0.3 ℓ /min 以上であれば約 2%以内である。

2.6 MK-II 炉心燃料集合体の崩壊熱

測定対象にした MK-II 炉心燃料集合体は、第6次取替燃料集合体(PFD601、PFD602) 2体である。主要な燃料仕様・照射履歴を表1、東海プルトニウム燃料センターでの製造 時における燃料の組成を表2に、照射履歴及び炉内装荷位置を図6,7に示す。PFD601と PFD602燃料集合体は、全運転期間(369E.F.P.Ds)を通じて炉心第1列で照射されたもの である。燃料集合体の要素平均燃焼度はそれぞれ 66.0GWd/t、65.7GWd/t である。また、 製造時の分析精度は U、Pu の同位体については測定誤差(1o) 0.14%、Am については 3%程度である。

崩壊熱の測定は冷却期間 40 日から 729 日まで計 127 回測定した崩壊熱の減衰曲線を図 8 に示す。崩壊熱の実測値は 1446.0±24.2W から 157.9±9.5W であり、冷却期間 400 日以 上の場合でも流量を 0.5ℓ/min から 0.3ℓ/min に変更し、出入口温度差ΔT を大きくするこ とにより、測定誤差約 6%で測定が可能であった。

3. 崩壊熱計算

3.1 計算方法

使用済燃料の崩壊熱計算は、日本原子力研究所シグマ研究委員会を中心に整備された 高速炉用ライブラリーを用いた ORIGEN2 により行った。このうち、崩壊定数、崩壊熱デー タ及び核分裂収率データについては JNDC 崩壊熱計算ライブラリーを用い、断面積につ いては JENDL-3.2 ベースのデータを用いることとし、「常陽」MK-II の炉心各位置での中 性子スペクトルで縮約した「常陽」MK-II 炉心用ライブラリーを使用した。

ここで、「常陽」MK-II 炉心用の断面積ライブラリーは、サイクル機構で整備した「高 速炉用 ORIGEN2 新ライブラリー作成システム」^[8]を用いて作成した。断面積の縮約に用 いた 70 群の中性子スペクトルは、CITATION^[9]で RZ 体系により計算した。

燃焼及び冷却に関しては、測定対象集合体が炉内に滞在した全期間について、各サイクルごとの運転日数及びサイクル間の燃料交換や定期検査による炉停止期間等の照射履歴(図7参照)を考慮した。また、照射前の燃料組成の分析日から炉心での照射開始日までの崩壊計算を行い、照射開始までの燃料組成の変化(特に、半減期が比較的短い²⁴¹Puのβ崩壊による²⁴¹Amの生成)を考慮した。

照射中の中性子束は、「常陽」炉心管理コードシステム MAGI により求めた。測定対象 集合体が装荷された炉心位置における各運転サイクルの初期と末期の計算値の平均を用 いた。核特性は、3次元六角格子(Hex-Z)について7群拡散理論により計算しており、 X-Y 平面は集合体ピッチを 81.5mm とする 331 の六角格子に分割している (実際の炉心集 合体数は 313 体、うち燃料集合体は 67 体)。炉定数セットには、JENDL-3.2 に基づく JFS-3-J3.2R セットの 70 群断面積を領域依存のスペクトルで7 群に縮約したものを使用し た。さらに、γスキャンで測定した軸方向の燃焼度分布を用いて MAGI の軸方向出力分布 を補正した。燃焼度分布測定については以下で述べる。

3.2 燃焼度測定による軸方向中性子束分布の補正

ORIGEN2 の計算に用いる MAGI の計算結果は、照射後試験(PIE: Post Irradiation Examination) データによる妥当性評価を行っている。PIE は、非破壊試験と破壊検査に大別される。いずれも燃焼で生成する FP 核種に着目した測定法であり、非破壊試験データとしては使用済燃料貯蔵プールで実施している燃焼度測定、また、破壊試験としては Nd 法を用いている。

破壊試験では、同位体希釈質量分析法により¹⁴⁸Nd 生成量を測定し、これを核分裂率で除して核分裂数を求め、これと核分裂物質量から燃焼率に換算する。Nd は希土類元素に属し、酸化物として燃料ペレット中に固溶し、セシウムのように温度勾配等による移動がない。Nd の安定同位体の生成量は、燃料の核分裂数に比例することから、軽水炉等でも燃焼率の指標に使われており、核分裂収率の精度が高い¹⁴⁸Nd が用いられる。測定値とMAGI による計算を図9に比較して示すが、両者は約1~2%で一致している^[10]。

非破壊検査は崩壊熱測定装置と同様に「常陽」原子炉付属建屋内水冷却池室の使用済 燃料貯蔵プールに設置された、燃焼度測定装置により使用済燃料の燃焼度分布を測定し ている[11]。ステンレス鋼製の容器(缶詰缶)に封入された使用済燃料を容器ごと水中に ある架台に載せて上下駆動・回転駆動させ、水中に固定した高純度 Ge 半導体検出器によ りγ線プロファイルを測定する。得られたγ線スペクトルを解析し、着目する FP 核種(¹⁴⁴Pr) の軸方向分布から使用済燃料集合体の燃焼度分布を評価した。¹⁴⁴Prは¹⁴⁴Ce(半減期 284.3 日)の娘核種で¹⁴⁴Ceと過渡平衡が成立しており、半減期が比較的長いことから、¹⁴⁴Pr の放射能は照射期間中の核分裂率に比例する。¹⁴⁴Pr のγ線のピーク(2186keV)の軸方向 計数率分布を MAGI の中性子束で計算した照射中の核分裂率分布と比較した。いずれも 炉中心レベルを1に規格化した相対分布となっており、両者を比較した結果を図 10 に示 す。炉中心レベルでの燃焼率測定値(Nd法)は MAGI 計算値とよく一致していることか ら、計算による軸方向の相対分布を実測値に基づいて補正することとした。これより、 MAGI の核分裂率と¹⁴⁴Pr 計数率の比(C/E)の燃料スタック部での平均値 PFD601:0.980、 PFD602:0.984 を得た。これを用いて MAGI による中性子計算値を補正して ORIGEN2 の 計算に用いた。

4. 崩壞熱計算結果

崩壊熱計算値及び測定値との比(C/E)の推移を図8に示す。PFD601及び PFD602集 合体ともに、全冷却期間を通じて計算値は実測値を約4~10%過小評価している。C/Eが 冷却期間に依存する傾向があり、100日までは時間経過とともに0.93まで低下している。 これは比較的短半減期(半減期:数日)の核種の減少の傾向と類似しており、これら核 種の生成量及び発熱量の計算誤差が考えられる。100日以上では測定誤差範囲内でほぼ一 定の約0.93となっている。

5. 誤差要因の検討

崩壊熱計算値の誤差要因を調べるため、PFD601 集合体について、核種生成量及び崩壊 熱の内訳の推移を表 3,4、図 11,12 に示す。ここでは、燃料スタック部(55cm)の計算値 についてのみ検討した。

図11から、全崩壊熱に対してはFP崩壊熱が支配的であるが、FP崩壊熱は冷却が進む とともに急激に減衰し、一方、アクチニド崩壊熱の減衰は緩やかである。表3,4に示す ように冷却期間70日ではFP崩壊熱が全崩壊熱の75%を占めるが、720日では62%まで 低下し、崩壊熱の内訳は冷却期間に依存して変化する。

図12の主要な発熱源である核種の崩壊熱の推移より、アクチニド核種では²⁴²Cm、²³⁸Pu、 ²⁴¹Am が主要な発熱核種である。このうち、²⁴²Cm 以外のアクチニド核種は今回の測定期 間範囲ではほとんど減衰しないため、その崩壊熱は一定であり、系統的な過小評価の原 因とは考えにくい。もうひとつの発熱源である FP 崩壊熱については、冷却期間 100 日ま でにほとんどの核種が減衰し、⁹⁵Zr、⁹⁵Nb、¹⁰⁶Rh、¹⁴⁴Pr の 4 核種が主要な発熱源である。 これら主要な発熱核種である ²⁴²Cm 及び上記 FP 4 核種の発熱量の和は全崩壊熱の減衰曲 線とよく一致する。これから、系統的な差の主要因は ²⁴²Cm 及び上記 FP 4 核種の計算誤 差が考えられ、これらの核種生成の断面積、核分裂収率及び発熱定数の不確かさを検討 する必要がある。しかし、系統的な測定誤差も考えられるため、上記の検討とともに、 崩壊熱測定装置の較正曲線も再度評価する予定である。

6. 結 言

使用済の高速炉燃料集合体の崩壊熱測定装置を開発し、「常陽」MK-II 炉心燃料(集合体平均燃焼度約 6.6 万 MWd/t) について、冷却期間 40 日から 729 日における崩壊熱を詳細に測定し、実測値 1446.0±24.2W から 157.9±9.5W の結果を得た。崩壊熱計算では、装荷位置の中性子スペクトルを反映した断面積を用いて、ORIGEN2 による燃焼計算を基に崩壊熱を算出し、C/E=0.96 から 0.90 を得た。

全冷却期間を通じて、計算値は実測値を系統的に約 6%から 8%過小評価しており、これは崩壊熱測定に伴う誤差よりも大きい。崩壊熱の内訳の中で、アクチニド核種の崩壊

熱については²⁴²Cm、²³⁸Pu、²⁴¹Am が主要な発熱核種である。このうち、²⁴²Cm 以外のア クチニド核種は今回の測定期間範囲ではほとんど減衰しないため、その崩壊熱は一定で あり、上記の系統的な過小評価の原因とは考えにくい。もう一つの発熱源である FP 崩壊 熱については、冷却期間 100 日までにほとんどの核種が減衰し、それ以降では⁹⁵Zr、⁹⁵Nb、 ¹⁰⁶Rh、¹⁴⁴Pr の 4 核種が主要な発熱源であった。よって、系統的な差の主要因は、²⁴²Cm 及び上記 FP 4 核種の生成量の計算誤差あるいは崩壊熱の測定誤差が考えられ、これらの 核種生成に係る断面積、核分裂収率及び発熱定数の不確かさを検討するとともに、測定 誤差を再度評価する必要がある。

謝 辞

本研究を進めるにあたり、武蔵工業大学の吉田正教授に貴重なご助言を頂いた。また、 崩壊熱測定及び解析、炉心管理コードシステム MAGI による計算作業で株式会社 NESI の長崎氏にご協力を頂いた。ここに記して謝意を表す。

参考文献

- S. Maeda et al., "Measurement and analysis of decay heat of fast reactor spent MOX fuel," Annals of Nuclear Energy, Vol. 31, pp.1119-1133 (2004).
- [2] Croff, A. G., "A Revised and Updataed Version of the Oak Ridge Isotope Generation and Depletion Code", ORNL-5621 (1980).
- [3] 須山賢也、片倉純一、大川内靖、石川眞、"JENDL-3.2 に基づく ORIGEN2 用ライブ ラリ: ORLIBJ32".JAERI-Data/Code 99-003, 1999.
- [4] J. F. Briesmeister, "MCNP-general Monte Carlo N-particle transport code version 4B", Report LA-12625, Los Alamos National Laboratory (1997).
- [5] 有井祥夫他、"高速実験炉「常陽」MK-III 炉心の炉心・燃料管理経験"日本原子力 学会誌, Vol. 39, No. 4, pp.315~325 (1997).
- [6] 千葉豪他、"JENDL-3.2 に基づく高速炉用炉定数 JFS-3-J3.2R の作成"、JNC TN9400 2001-124 (2001).
- [7] K. Tasaka et al., "JNDC Nuclear Data Library of Fission Products Second Version -", JAERI 1320 (1990).
- [8] 大川内靖、福島学、"JENDL-3.2 に基づく高速炉用 ORIGEN2 断面積ライブラリー作 成ツールの開発" JNC TN9400 99-051 (1999).
- [9] T. B. Fowler et al., "Nuclear Reactor Core Analysis Code : CITATION", ORNL-TM-2496 (ReV.2, 1971).
- [10] 関根隆他、"高速中性子照射場としての高速実験炉「常陽」のキャラクタリゼーション一照射条件評価技術の現状と今後―"JNC TN1340 2001-001 (2001).

[11] 高松操他、"使用済高速炉燃料の中性子放出率の測定と評価" JNC TN9410 98-011 (1997).

	集合体名	PFD601	PFD602			
MOX	²³⁵ U 濃縮度	18.5 wt.%	18.5 wt.%			
燃料	Pu 冨化度	29.3 wt.%	29.2 wt.%			
仕様	Pu 組成比	Pu-238/239/240/241/242=1.21/61.97/24.39/8.15/4.28				
燃	料スタック長	55 cm				
照射	炉内滞在期間	H9.3.21~H12.5.31				
条件	照射日数	369 E.	.F.P.Ds			
中性子則	照射量 $\boldsymbol{\phi}_{total}[n/cm^2]$ 集合体平均)	1.14×10^{23}	1.13×10^{23}			
燃 ()	焼度[MWd/t] 集合体平均)	66,000	65,700			

表1 測定対象燃料集合体の燃料仕様・照射履歴

	重量				
核種	[g/SA]				
	PFD601	PFD602			
U-235	1408	1408			
U-238	6188	6189			
Pu-238	38	38			
Pu-239	1947	1946			
Pu-240	766	766			
Pu-241	256	256			
Pu-242	134	134			
Am-241	38	38			

表2 測定対象燃料集合体の組成(製造時)

核種		崩壊熱(W)				割合(%)			
		70 日*	370日	510日	720 日	70 日*	370日	510日	720 日
ア	²⁴² Cm	188.3	53.0	29.5	12.4	19.2	19.0	14.3	8.5
クチ	²³⁸ Pu	19.9	20.4	20.4	20.4	2.0	7.3	9.9	13.9
-	²⁴¹ Am	9.9	10.6	11.0	11.5	1.0	3.8	5.3	7.8
ド	アクチニド合計	228.0	94.0	70.8	54.2	23.3	33.7	34.4	37.0
FP	¹⁴⁴ Pr	136.9	65.9	46.8	28.1	14.0	23.6	22.7	19.2
	¹⁰⁶ Rh	124.9	71.4	55.0	37.2	12.8	25.6	26.7	25.4
	⁹⁵ Zr	101.5	3.9	0.9	0.1	10.4	1.4	0.4	0.1
	⁹⁵ Nb	140.7	8.3	1.8	0.2	14.4	3.0	0.9	0.1
	FP合計	737.7	183.3	133.7	91.3	75.4	65.7	64.9	62.4
放射化核種		12.8	1.7	1.4	0.8	1.3	0.6	0.7	0.5
合計		978.5	279.0	205.9	146.3	100.0	100.0	100.0	100.0

表3 主要発熱核種の崩壊熱の内訳 (PFD601)

*冷却期間

表4	主要発熱核種の生成量の内訳	(PFD601)
表4	主要発熱核種の生成量の内訳	(PFD601	

核種		重量(g)				割合(%)			
		70 日*	370日	510日	720 日	70 日*	370日	510日	720 日
アクチニ	²⁴² Cm	1.5E+00	4.4E-01	2.4E-01	1.0E-01	0.0	0.0	0.0	0.0
	²³⁸ Pu	3.5E+01	3.6E+01	3.6E+01	3.6E+01	0.2	0.2	0.2	0.2
	²⁴¹ Am	8.7E+01	9.3E+01	9.6E+01	1.0E+02	0.5	0.6	0.6	0.6
ド	アクチニド合計	1.0E+04	1.0E+04	1.0E+04	1.0E+04	60.6	60.6	60.6	60.6
FP	¹⁴⁴ Pr	2.4E-04	1.2E-04	8.3E-05	5.0E-05	0.0	0.0	0.0	0.0
	¹⁰⁶ Rh	3.6E-06	2.1E-06	1.6E-06	1.1E - 06	0.0	0.0	0.0	0.0
	⁹⁵ Zr	9.2E-01	3.6E-02	7.9E-03	8.2E-04	0.0	0.0	0.0	0.0
	⁹⁵ Nb	7.4E-01	4.4E-02	9.5E-03	9.8E-04	0.0	0.0	0.0	0.0
	FP合計	7.4E+02	7.4E+02	7.4E+02	7.4E+02	4.5	4.5	4.5	4.5
放射化核種		5.8E+03	5.8E+03	5.8E+03	5.8E+03	34.9	34.9	34.9	34.9
合計		1.7E+04	1.7E+04	1.7E+04	1.7E+04	100.0	100.0	100.0	100.0

*冷却期間

(PFD601)

図6 測定対象燃料集合体の照射履歴

炉心アドレス

— 82 —

図10 軸方向核分裂率の比較(PFD601、PFD602)

図12 主要発熱核種の崩壊熱の推移(PFD601)