核データ・炉物理特別会合 (2)

炉物理委員会

未臨界炉の炉物理ワーキングパーティー報告

東北大学大学院工学研究科

岩崎 智彦

tomohiko.iwasaki@gse.tohoku.ac.jp

1. はじめに

(1) これまでの活動

日本原子力学会及び日本原子力研究所の炉物理委員会では、「加速駆動未臨界原子炉 (ADS)」を、次世代を担う原子炉と認識し、加速駆動未臨界原子炉ワーキングパーティ ー (ADS-WP)を組織し、炉物理的な観点からいくつかの活動を行ってきた。

平成11年7月には、加速器駆動型未臨界炉の現状と課題を炉物理的な観点から検討することを目的として、第1期 ADS-WP、「加速器駆動炉の炉物理」ワーキングパーティーが設立された。このワーキングパーティーは平成12年3月までの2年間の活動を行い、以下の3課題に対して活動を行った。

・「高エネルギー領域の中性子輸送計算の問題」

・「未臨界炉に特徴的な静特性と動特性(安全性)の問題」

・「概念設計、要素技術開発を含むシステム設計の問題」

この ADS-WP の成果は、JAERI-Review-2001-047 にまとめられ、報告されている。

この成果を受け、ADS の研究をさらに進めるため、平成 13 年 7 月に、ADS-WP の第 2 期として、「未臨界炉の炉物理」ワーキングパーティーが立ち上げられた。本紙は、この 第 2 期 ADS-WP の活動の概要を報告するものである。なお、本 WP の活動・運営に当た って、京都大学原子炉実験所専門ワークショップ制度を活用させていただいた。御礼申 し上げる。

(2) 「未臨界炉の炉物理」ワーキングパーティーの活動項目

炉物理委員会「未臨界炉の炉物理」ワーキングパーティーでは、これまで臨界安全管 理の視点から研究されてきた「未臨界」に関する項目を、加速器駆動未臨界原子炉シス テムをターゲットにして、炉物理的検討を理論、解析の面から行うことし、以下の4項目 を検討した。 未臨界度の理論

今までの炉物理は「臨界」を対象として構築されており、未臨界度についての十 分な理論的整理がなされているとは言えない。本 WP では「未臨界度」について理 論的な検討・整理を行う。

② 未臨界炉のベンチマーク解析

臨界体系を対象として構築されてきた原子炉の核計算手法において、未臨界体系 に対する計算精度が、臨界体系と同等となる保障は無い。本 WP では、FCA 等の未 臨界度測定実験データを参考にしながら、未臨界体系に対する計算精度を明らかに するためのベンチマーク問題を設定する。そして、その問題に対して、参加者各自 が持つ解析コード・ライブラリを用いた解析を行い、相互比較を行う。

③ 未臨界炉における未臨界度の設定

現在いくつかの機関で進められている ADS 設計においては、システムの未臨界度の設定について、現在まで明確な整理は行われていない。本 WP では、未臨界度の設定に関する研究の調査を行い、ADS 炉設計における未臨界度設定の考え方をまとめる。

④ 未臨界炉における未臨界度の測定と監視

未臨界原子炉を運転するためには、運転中常時、未臨界度の監視を行うことが必要であるが、未臨界度監視に対する検討はあまり行われていない。そこで、本 WP では未臨界度測定手法について理論的な整理を行うとともに、ADS 運転時の未臨界 度監視への応用について検討を行う。

(3) WP メンバー(順不同)

岩崎智彦(東北大、リーダー)、山根義宏、北村康則(名大)、代谷誠治、三澤毅、小 林啓祐(京大)、竹田敏一(阪大)、工藤和彦(九大)、阪元重康(東海大)、橋本憲吾 (近大)、山根剛、岡嶋成晃、辻本和文、西原健司、杉暉夫(原研)、横堀仁(新型炉 技術)、青木繁明(三菱)、藤村幸治(日立)、毛利智聡(川重)、石川眞(サイクル機 構)、伊藤大一郎、寺田明彦(三井造船)、菊地茂人(東芝)、安藤良平(東芝)、西尾 正英(NUPEC)

2. ADS と炉物理

加速器駆動未臨界型システムは、新たな原子力システム概念として夢多き研究分野であるが、その研究は緒についた所である。本章では、WP 活動の報告の前に、ADS 研究

の現状・課題を整理しておく。

(1) ADS の必要性

ADS は、体系を未臨界として加速器により運転制御を行うシステムであり、即発臨界 までの余裕を大きく取ることができ、臨界安全性に優れている。例えば、核変換を行う システムとしてマイナーアクチニド (MA)を主成分とする燃料を用いるシステムを考え てみる。原子炉としてシステムを組んだ場合、実効遅発中性子割合やドップラー率が非 常に小さくなることから、即発臨界までの余裕が 0.1%Δk/k 程度と極めて小さくなり、実 質的に運転できないシステムとなってしまう(ウラン燃料原子炉の場合、およそ 0.7%Δ k/k 程度、プルトニウムを燃料とする高速炉でも 0.4%Δk/k 程度である)。これに対して、 ADS として組む場合には、即発臨界までの余裕を自由に(経済性の許す範囲で)設定で きることから、十分運転可能なシステムを構築することができる。

このように ADS は、原子力システムを臨界から開放することにより、原子炉としては 運転不可能なシステムを運転可能にする新たな原子力システム概念と言える。

(2) ADS 研究の課題

ADS 研究の課題を分類すると以下の4項目に整理できる。

未臨界システム管理

外部中性子源で駆動される未臨界体系の核特性。これは純粋な炉物理の課題であ り、この解決は炉物理研究者の責務である。

加速器駆動制御

加速器駆動ハイブリッドシステムの運転・制御性。ADSの成立性に関わる課題で、 加速器科学などの分野と連携して早急に取り組むべき課題である。

高エネルギー中性子挙動

核破砕反応と高エネルギー中性子の挙動。中性子発生効率のよい GeV オーダー加速器を ADS 中性子源として用いる場合に必須の課題である。

長寿命放射性核種核変換

マイナーアクチニドや長寿命核分裂生成物の核変換特性。ADS を長寿命放射性核 種の核変換に用いる場合にシステム性能を定める大事な研究課題である。

以下では、上記研究課題に含まれる炉物理的課題の中の主要 3 項目を取り上げ、炉物 理研究の現状を明らかにしておく。

(3) 「増倍率の予測精度」の現状

ADS の場合、増倍率は、システムの臨界安全性を支配する因子であるとともに、下式

の通り、システムの出力も決定する (原子炉の場合は k=1 であり、出力は 一意に決まらない。すなわち、運転者 が自由に設定できる)。

$$\mathbf{P} = \frac{\mathbf{S}}{1 - \mathbf{k}}$$

ここで、PはADSの出力、Sは外部中 性子源での中性子発生数、k は増倍率

(未臨界増倍率)である。増倍率の精 度は、Pの精度に極めて大きな影響を 持つ。例えば、増倍率 0.95 において増 倍率に±1%の誤差を見込むと、P は 17S~25S までの不確か(約±20%の誤 差)を持つことになる。

このように増倍率の予測精度は、 ADS システムにとって最重要な事項 である。しかしながら、現在の増倍率 計算精度は、理論構成から計算手法に 至るまで「臨界」を前提に体系化され ているため、ADS の設計に十分なもの とは言えない。Fig.1 に近年行われた国 際 ADS ベンチマークにおける増倍率 の計算結果比較を示す。燃焼前の増倍 率、燃焼中の変化とも研究機関によっ て大きな相違が存在している。ADS 研 究においては、増倍率という炉物理の 中で最も基本的な量についての再研 究が必要であり、ADS は「臨界」に頼 っていた過去の炉物理に対して大き く変換を迫っていると言える。

Fig.1 OECD/NEA 主催の **ADS** 計算ベンチマークの結果。3 つの研究機関による **ADS** 体系の増倍率とその燃焼変化を示 している。ここで、**JAERI**(日本原子力研究所)、**PSI**(スイ ス)、**IPPE**(ロシア)。

Fig.2 未臨界体系の増倍率の測定結果。京都大学原子炉実験所の実験データで、炉心中の異なる位置に配した4本の検出器により増倍率を測定している。

(4) 「増倍率の測定・監視」の課題

ADS を運転するためには、体系の増倍率を常時、的確に監視することが必須である。 このためには未臨界体系の増倍率を高精度に測定する手法が必要であるが、現状はこの 点でも十分ではない。 Fig.2 に、京都大学原子炉実験所の臨界 集合体にて行われた未臨界体系の増倍 率測定実験の結果を示す。実験において は装荷燃料体数を変えて増倍率を変化 させた体系を組み、その体系の異なる位 置に4本の中性子検出器を配し、それぞ れから増倍率を導出している。図中には、 モンテカルロコード(KENO)による計 算結果も合わせて示している。この図か ら、増倍率が小さい体系における増倍率 測定精度は決して良くないことが分か る。

現在行われている臨界安全管理におい ては、増倍率1からの裕度の確認ができれ ば良いので、現行の測定精度でも十分な管 理が可能であるが、ADS では増倍率1から

Fig.3 増倍率による ADS 体系内の出力分布の相違。中央 部に半径 0.3m のターゲット領域を持つ ADS 体系(半径 1.25m)に対する値である。実線は増倍率 0.95 の体系の出 力分布であり、典型的な ADS の分布。点線は増倍率 0.996 の体系の出力分で、ほぼ臨界の原子炉の分布に等しい。

の差を定量的に高精度に把握することが望まれるため、現行の測定手法は十分でないと 言える。増倍率の測定・監視の点は、炉物理の根本項目でありながら、十分な状況とは いえない。今後早急な取り組みが必要である。

(5) 「出力分布」の課題

ADS 体系の出力分布は、臨界の原子炉のものとは大きく異なる。現在の ADS 設計では ADS 中心部に大きな中性子発生ターゲットが置かれるため、その近傍の出力分布に大き なピーキングが生じる。Fig.3 には典型的な増倍率(0.950)を持つ ADS と、臨界に極め て近い増倍率(0.996)を持つ ADS の径方向相対出力分布を図示している。臨界に近い ADS では原子炉と同程度の極めて平坦な分布となっているが、典型的な ADS では 2 を大 幅に超えるピーキング値を持つ急峻な分布となっている。出力分布におけるこのような 高い出力ピークは、燃料健全性の確保を難しくし、運転を困難にし、最終的にはシステ ム安全性や経済性の大幅な低下を招くこととなる。ADS においては、このような出力分 布の予測精度がシステムの性能を大きく左右することとなる。さらに、ADS の場合は、 炉中心への大きなターゲット、数+ MeV から GeV オーダーまでの高エネルギー中性子、 マイナーアクチニドの高濃度炉心装荷など、現行原子炉に比べて格段に難しい条件が課 されることとなる。ADS への研究に積極的に取り組むことにより、現行原子炉の計算精 度も格段に向上すると予想される。この点からも、積極的な取り組みが望まれる。

3. 活動成果概要

未臨界度の理論

未臨界度の理論の整理

未臨界度の理論を整理し、以下の論文に纏めた。

"A New Static Dynamic One-Point Equation and Analytic and Numerical Calculation for a Subcritical System"

K. NISHIHARA, T. IWASAKI and Y. Udagawa, Nucl. Sci. Technol. 40 (2003)

[Abstract] In this study, we derived a new one-point equation based on the balance of the fission neutrons. The equation has the same form as the conventional equation using k_{eff} , which represents the neutron balance in the whole core. The variable of the new equation are the number of fission neutrons and delayed neutron precursors; and the coefficients are the multiplication rates of prompt fission neutrons, delayed neutrons and source neutrons. In the conventional equation, the variables are weighted by the adjoint flux; in other words, they are adjusted to the critical state. The variables in the new equation correspond to actual values in a deep subcritical state, hence, the physical meaning of each term is clear. The dynamic behavior of a slab core with an external source was analyzed through calculations based on the new equation. Deterministic and probabilistic calculations of the equation were performed for a typical accelerator-driven system in the static state.

未臨界度に関する用語の整理と提案

上記論文にまとめた通り、未臨界度を厳密に表すには、いくつかの新たな物理量を用い る必要がある。WPでは、これらを含め、未臨界度の理論に関する物理量を整理するとと もに、新たに持ち込まれた量についてはその呼称を付け、提案した。Table 1 にそれをま とめて示す。

(2) 未臨界炉のベンチマーク解析

ベンチマーク問題の設定

WPでは、まず、未臨界体系に対する計算ベンチマークを設定する目的で、国内で行われた未臨界体系に対する実験について調査した。その結果、以下の3施設で行われた実験をベンチマーク問題のベースとして選んだ。

日本原子力研究所 高速臨界集合体 FCA

日本原子力研究所 臨界集合体 TCA

京都大学原子炉実験所 臨界集合体 KUCA

選ばれた施設での実験について検討を行い、3種類の未臨界体系ベンチマーク問題を作成した。

記号	和名	英名				
$k_{\scriptscriptstyle eff}$	実効増倍係数(率)	Effective multiplication factor				
$Q_{eff} = \left(\frac{1}{k_{eff}} - 1\right)S$	実効中性子源	Effective neutron source				
$\varphi^* = Q_{eff}/Q$	中性子源実効度	Neutron source effectiveness				
M = S/Q	中性子増倍(度)	Neutron multiplication				
$k_{sub} = \frac{S}{S+Q}$	未臨界増倍率	Subcritical multiplication rate				
k _f	核分裂中性子增倍率	Fission neutron multiplication rate				
k_q	源中性子増倍率	Source neutron multiplication rate				
S=体系の核分裂中性子総数 $[n/sec]$ $Q=$ 体系の中性子総源 $[n/sec]$						

Table 1 未臨界度に関係する物理量

ベンチマーク問題の解析

時間の制約から、WP では、 作成した 3 つのベンチマーク 問題の内、FCA 及び TCA の二 つのベンチマーク問題につい て、WP メンバーによりベンチ マーク解析・比較を行った。 ベンチマーク解析には、いず れも 10 機関程度が参加した。 解析には特定の計算手法(コ ード・ライブラリなど)を指 定せず、機関独自の手法により 解析を行うこととし、その解析 結果を持ち寄った。具体的な結

Fig.4 FCA ベンチマーク解析結果。軸方向 ²³⁵U 反応率分布 (Case-C:中性子源位置 4z)

果の一例として、上述した FCA ベンチマークの未臨界増倍率と U235 核分裂分布の比較 を Table 2 と Fig.4 に示す。

Table 2 FCA ベンチマーク

			Case-B	Case-C	Case-D	
三井造船	MCNP4c	ENDF/B-VI	0.9612	0.9615	0.9722	
名古屋大学	MVP	JENDL-3.3	0.922	0.936	0.9394	
原研	THREEDANT	JENDL-3.2	0.9860	0.9840	0.9948	
三菱重工	DORT	JENDL-3.2	0.9814	0.9810	0.9904	
東北大学	CITATION	JENDL-3.3	0.9889	0.9886	0.9933	
(中性子源位置 4z)						
			Case-B	Case-C	Case-D	
三井造船	MCNP4c	ENDF/B-VI	0.9405	0.9399	0.9646	
名古屋大学	MVP	JENDL-3.3	0.938	0.932	0.937	
原研	THREEDANT	JENDL-3.2	0.9741	0.9779	0.9934	
三菱重工	DORT	JENDL-3.2	0.9709	0.9700	0.9874	
東北大学	CITATION	JENDL-3.3	0.9807	0.9800	0.9913	

一 中性子源位置を異なる位置に置いたときの未臨界度増倍率 k-sub (中性子源位置 1z)

FCA に対しては、モンテカルロコード(MCNP、MVP)、輸送コード(THREEDANT、DORT)、 拡散コード(CITATION)により計算が行われた、それらによる解析結果には、比較的大 きなバラツキが見られた。また、反応率分布などの量についてもかなりのバラツキが存 在することが確認された。この結果は、TCA ベンチマークにおいても見られ、今後未臨 界体系に対する計算の精度向上のための努力が必要であることが確認された。

(3) 未臨界炉における未臨界度設定

未臨界度の設定に関する調査

ADS の未臨界度設定については、過去に二つの研究例(OECD/NEA、韓国)が報告されている。また、ADS と類似の炉型である高速炉「もんじゅ」における制御棒設計において、似たような設計が報告されている。また、東北大により、Pb-Bi型 ADS に対する未臨界度設定に関する研究が行われている。本 WP ではこれらの研究を調査し、比較検討した。

未臨界度の設定の考え方

上記の調査結果を踏まえ、ADS の未臨界度の設定に考え方について整理し、以下の通りまとめた。この考え方は、上記で調査した研究において共通した考え方であった。

未臨界度レベルkの評価式:

$$k = 1.0 - \Delta k_{\text{llg}} - \Delta k_{\text{star}} - \Delta k_{\text{mkg}} - \Delta k_{\text{star}} - \Delta k_{\text{star}}$$

ここで、k :未臨界度の設定値(→サイクル初期の運転時の増倍率)
Δk_{温度} :高温(Hot) - 冷温(Cold)反応度
Δk_{事故} :事故投入反応度
Δk_{燃焼} :燃焼反応度
Δk_{余裕} :運転余裕のための反応度
Δk_{誤差} :計算・測定誤差の不確かさ吸収のための反応度

k が、ADS の運転開始時に満足すべき運転時の未臨界度を示しており、その値は、ADS 運転時に変化することが予想される反応度(温度変化に対応した反応度、燃焼に伴う反 応度及び事故などによって投入されると予想される反応度)、運転余裕のための反応度な らび k の予測誤差・測定誤差による反応度によって評価できる。

<u>ADS への適用</u>

以上の考え方を ADS の未臨界度に応用したときに、それぞれに因子ならびに未臨界度の設定値がどのようになるかについても、WP で検討した。その検討の結果、具体的な未 臨界レベルの決定のために、今後必要な検討課題として、以下の点が指摘された。

- 燃焼反応度が極めて大きな影響あり、その計算精度の向上が重要である。
- 事故事象として、どの範囲の事象を考えるか?
 - ADSの高速炉心は正のボイド係数であり、100%ボイド考慮が必要となる?
- 余裕・不確かさを、どのように設定するか?
- 計算精度は現行高速炉よりかなり大きくなる?
 - マイナーアクチニドなどの核データ不確かな核種が多く存在する。

(4) 未臨界炉における未臨界度測定と監視

未臨界測定方法の整理

原子炉における未臨界度測定法として、①負のペリオド法、②制御棒落下法、③補償 法、④中性子源増倍法、⑤逆動特性法、⑥炉雑音解析法、⑦パルス中性子源法が挙げら れる。これらの内、最初の3つの手法は、初期状態として臨界状態にしてやる必要があ ったり(負のペリオド法、制御棒落下法)、予め校正された制御棒がすでに存在する必要 があったり(補償法)するため、ADSの通常運転中における未臨界度監視という目的に は馴染まない。WPでは、ADS へ適用できる手法として、残りの 4 つの手法をレビューした。

未臨界監視への応用の検討

上記でレビューした方法の結果を踏まえ、ADS にける未臨界監視へ応用するというこ とを念頭に検討した。特に ADS においては、加速器ビームの時間的な構造に関して、直 流ビーム打ち込みであるか周期的パルス打ち込みであるかの 2 通りが有るため、これを 十分に意識して整理を行った。

その結果、直流ビーム打ち込みの場合においては、測定精度などの面でかなりの難は あるものの、中性子発生量の変動の影響を直接受けないという点で、雑音解析法(ファ インマンα法、ロッシα法、周波数解析法)が現状で唯一目的に叶っていることが示され た。一方、周期的パルス打ち込みの場合では、これまでの経験と知見の蓄積の面でパル ス中性子源法が優れていることが示され、さらにファインマンα法は周期的パルス打ち込 みの場合にも適用できることが確認された。

4. おわりに

日本原子力学会及び日本原子力研究所の炉物理委員会のもと、第2期 ADS-WP として 「未臨界炉の炉物理」ワーキングパーティーが、平成13年7月に立ち上げられ、15年3 月まで活動を行った。この WP では、これまで臨界安全管理の視点から研究されてきた 「未臨界」に関する項目を、理論、解析の両面から、加速器駆動未臨界原子炉を念頭に おきながら検討した。WP で行った具体的項目は、①未臨界度の理論、②未臨界炉のベン チマーク、③未臨界炉における未臨界度設定、④未臨界炉における未臨界度測定と監視 以下の4項目である。

その結果、ADSにおける未臨界の理論、解析、設計、測定・監視に関する項目が、WP において整理されるとともに、いくつかの具体的な提案や成果発表がなされた。これら の成果は、加速駆動未臨界原子炉の研究・開発に有用な情報となるものであり、第2期 ADS-WPとして開催された本 WPは成功裡に終了できたものと考える次第である。