燃焼計算用一群定数と
使用済燃料核種組成データベースの作成

日本原子力研究所
須山賢也
kenya@cyclone.tokai.jaeri.go.jp

1 始めに

シグマ委員会核種生成量評価 WG においては、現在軽水炉（PWR と BWR）ならびに FBR 用 ORIGEN2 ライブラリを作成する作業を行っている。また、同様の使用済燃料の核種組成に関するトピックスとして、それらのデータのデータベース化の作業も進捗している。本報告では、それらに関しての概要を述べることとする。

2 燃焼計算用一群定数ライブラリの作成

ORIGEN2 [1, 2] は、使用済燃料の核種組成、放出放射能、熱、そして毒性を算出する燃焼計算コードである。非常に多くのユーザーが世界中において、この分野のコードとしてはもっとも成功したもののである。そのライブラリを作成する作業は、「JENDL-3.2 の普及のために重要である」との考えにより、数年前から始まった。その作成におけるモデル化の検討、実際のライブラリ作成と作業は進捗している。

ORIGEN2 のライブラリはテキストデータであるので、ユーザーがライブラリを変更することが非常に容易である。ORIGEN2 の内蔵ライブラリと、今回ライブラリを作成しようとするものを表 2.1 に示す。

<table>
<thead>
<tr>
<th>Library</th>
<th>今回の作業で更新</th>
</tr>
</thead>
<tbody>
<tr>
<td>一群断面積</td>
<td>○</td>
</tr>
<tr>
<td>燃焼度依存アクチノイド断面積サブルーチン</td>
<td>○</td>
</tr>
<tr>
<td>崩壊および核分裂収率</td>
<td>○</td>
</tr>
<tr>
<td>光子</td>
<td>×</td>
</tr>
</tbody>
</table>
一群断面積が、いわゆる「ORIGEN2 内蔵ライブラリ」にあたるものである。また、燃焼度依存アクチノイド断面積は、FORTRAN の SUBROUTINE であって、燃焼度毎の一群断面積が、重要なアクチノイドの核反応に関して与えてある。崩壊および核分裂収率データは、崩壊定数と独立核分裂収率を与えるものである。以上 3 ライブラリが JENDL-3.2 からライブラリを作成する作業の対象とされている。尚、光子ライブラリは、ガンマ線スペクトルの計算に利用されるものであるが、今回の作業からは除外されている。また、断面積ライブラリ以外に BLOCK DATA 文で与えてあるパラメータ等もあるが、あまり ORIGEN2 本体に手を加えたくない」という考えから、作業対象とはしなかった。

2.1 軽水炉用ライブラリの作成

軽水炉用ライブラリの利用目的が、燃料集合体をベースにした核種のイベントリー計算であることから、作成対象は燃料集合体平均の組成が得られることを目標に設定された。それに伴い、WG の炉心メカの委員より集合体に関するパラメータを得て、集合体を代表する単一バインセールモデルによって計算を行うこととした。

ライブラリ作成対象とライブラリの作成の表 2.2 に示す。現在、軽水炉用 MOX燃料を対象とした作業も開始されており、また、WG での議論も踏まえて、ライブラリ想定最高燃焼度等の見直しがされる予定であり、この表が最終的なスケルトにはならないことに御注意いただきたい。この表の中で、NLB とは一群断面積ライブラリの識別番号であり、NLIB(12) とは、燃焼度依存アクチノイド断面積を識別するものである。この値は暫定的なものであり、あとに述べる高速炉用ライブラリとあわせて整合性の取れた値にする予定である。

軽水炉用ライブラリの作成は、SRAC [3](SRAC95 [4]) と ORIGEN2 を組み合わせた SWAT [5] を使用して行っている。このコードは、燃焼度毎の組成を用いて与えられた体系における SRAC の入力を作成して、実効断面積の変化を考慮しつつ燃焼計算を行うシステムである。その処理の途中で ORIGEN2 フォーマットの群断面積ライブラリを作成しており、それをプログラム群によって必要な群断面積や SUBROUTINE に変換することで目的とするライブラリを得る。その処理の流れを図 2.1 に示した。このシステムは、SWAT のソースプログラムとともに公開される予定であり、ユーザーが新しいライブラリを必要とした時には、独自のライブラリが作成できるようにしてある。
Table 2.2: 軽水炉用ライブラリ一覧

<table>
<thead>
<tr>
<th>Library</th>
<th>Fuel</th>
<th>Void Ratio(%)</th>
<th>U235 Enrich (%)</th>
<th>Max Burnup (GWd/t)</th>
<th>NLB</th>
<th>NLIB(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS100J32</td>
<td>BWR STEP-1</td>
<td>0</td>
<td>2.7</td>
<td>40</td>
<td>709</td>
<td>710</td>
</tr>
<tr>
<td>BS140J32</td>
<td>BWR STEP-1</td>
<td>40</td>
<td>2.7</td>
<td>40</td>
<td>712</td>
<td>713</td>
</tr>
<tr>
<td>BS170J32</td>
<td>BWR STEP-1</td>
<td>70</td>
<td>2.7</td>
<td>40</td>
<td>715</td>
<td>716</td>
</tr>
<tr>
<td>BS200J32</td>
<td>BWR STEP-2</td>
<td>0</td>
<td>3.7</td>
<td>40</td>
<td>718</td>
<td>719</td>
</tr>
<tr>
<td>BS240J32</td>
<td>BWR STEP-2</td>
<td>40</td>
<td>3.7</td>
<td>40</td>
<td>721</td>
<td>722</td>
</tr>
<tr>
<td>BS270J32</td>
<td>BWR STEP-2</td>
<td>70</td>
<td>3.7</td>
<td>40</td>
<td>724</td>
<td>725</td>
</tr>
<tr>
<td>BS300J32</td>
<td>BWR STEP-3</td>
<td>0</td>
<td>4.7</td>
<td>40</td>
<td>727</td>
<td>728</td>
</tr>
<tr>
<td>BS340J32</td>
<td>BWR STEP-3</td>
<td>40</td>
<td>4.7</td>
<td>40</td>
<td>730</td>
<td>731</td>
</tr>
<tr>
<td>BS370J32</td>
<td>BWR STEP-3</td>
<td>70</td>
<td>4.7</td>
<td>40</td>
<td>733</td>
<td>734</td>
</tr>
<tr>
<td>PWR34J32</td>
<td>PWR 17×17</td>
<td>3.4</td>
<td>55</td>
<td>55</td>
<td>700</td>
<td>701</td>
</tr>
<tr>
<td>PWR41J32</td>
<td>PWR 17×17</td>
<td>4.1</td>
<td>55</td>
<td>55</td>
<td>703</td>
<td>704</td>
</tr>
<tr>
<td>PWR47J32</td>
<td>PWR 17×17</td>
<td>4.7</td>
<td>55</td>
<td>55</td>
<td>706</td>
<td>707</td>
</tr>
</tbody>
</table>

Figure 2.1: SWAT による ORIGEN2.1 用断面積ライブラリの作成 — LWR
2.2 高速炉用ライブラリ

FBR 用ライブラリも、作成作業が進めている。FBR に関しては「常陽」や「もんじゅ」以外には決まったスペックが無いが、現在検討されている中でもっとも一般的であると考えられているスペックをもとに、対象炉心を選択している。それを表 2.3 に示す。

<table>
<thead>
<tr>
<th>Type of Reactor</th>
<th>Type of Fuel</th>
<th>Pu Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Experimental Reactor (JOYO)</td>
<td>MOX</td>
<td>LWR</td>
</tr>
<tr>
<td>Prototype Reactor (MONJU)</td>
<td>MOX</td>
<td>LWR</td>
</tr>
<tr>
<td>600 MW Demonstration Reactor</td>
<td>MOX</td>
<td>LWR</td>
</tr>
<tr>
<td>600 MW Demonstration Reactor</td>
<td>METAL</td>
<td>LWR</td>
</tr>
<tr>
<td>600 MW Demonstration Reactor</td>
<td>NITRIDE</td>
<td>LWR</td>
</tr>
<tr>
<td>1300 MW Commercial Reactor</td>
<td>MOX</td>
<td>LWR</td>
</tr>
</tbody>
</table>

Pu Burner

その作成の流れを Figure 2.2 に示す。FBR ライブラリの場合、炉心計算をもとにライブラリを作成することとなった。すなわち、初めに JENDL-3.2 に内蔵されている 340 核種のデータに関して、pointwise データを作成した。そして、JFS3-J3.2 の作成時に使用したスペクトルと Pu-239 の χ を接続したスペクトルで繰約を行って、73 群断面積セットを作成する。そして、JFS3-J3.2 を使用して、代表的高速炉を対象にして、70 群の炉心解析を行い、初めに作成した、73 群無限希釈断面積を、上記の炉心計算による中性子スペクトルと Pu-239 の χ を接続したスペクトルで繰約することで、無限希釈一群断面積を作成する。さらに、その無限希釈一群断面積セットについて、一部の核については、共鳴自己遮蔽の効果を読み入れるために、(n,γ) と (n,fission) 反応について炉心計算の結果そのまま (各媒質の密度ならびに温度によって決る) 実効一群断面積で置き換えを行う。このようにして作成したライブラリの NLB 番号等は、軽水炉用ライブラリとの整合性をとりつつ決定する予定である。

— 5 —
2.3 崩壊ならびに核分裂収率データの作成

崩壊ならびに核分裂収率のデータも更新作業が行われた。JNDC 核分裂ライブラリ第2版[6]においてそれらのデータが与えられているので、そのデータを ORIGEN2 ライブラリのフォーマットに変更することとした[7]。JNDC FP ライブラリ第2版の方が ORIGEN2 ライブラリより内蔵されている同位体数が多いので、JNDC FP ライブラリ第2版の内容をそのまま変更した場合には ORIGEN2 自体の配列の変更を必要とする。そこで、JNDC FP ライブラリ第2版のチェーンデータ注1を ORIGEN2 ライブラリのチェーンに合わせることとした。よって、結果的にこれまでのライブラリをそのまま置換可能なライブラリとなっている。

JNDC FP ライブラリ第2版における核分裂収率は、高エネルギーボケットや熱中性子といった

注1 各同位体の親子関係を意味する。
た、核分裂を起こす中性子のエネルギに依存した形で評価するが、そのために、PWR, BWR, FBRといった炉心ごとの代表的な中性子スペクトルから、高速群と熱群での核分裂率をあらかじめ求めておく、その割合を重みとして、JNDC FPライブラリ第2版に内蔵されている核分裂収率を平均化することとした。

このようにして作成されたライブラリは、算出される崩壊熱がJNDC FPライブラリ第2版を使用してもとまる原子力学会推奨値を算出するように作成されており、ユーザーよの利便性が大きいものと考えている。

2.4 今後の作業

現在、軽水炉ならびにFBR用のライブラリは実作成され、動作も確認されている。よって、今後は、これらのライブラリをまとめてバックアップしている。PWRに関しては、原研において現在照射後試験を行っており、その中でライブラリ作成対象と同一の条件のサンプルのデータが取得されつつある。よって、その解析を行うことで検証を行うことを考えている。

また、軽水炉用のMOX燃料の使用が計画されている事に伴い、MOX燃料用ライブラリの作成も、作業スケープの中に入れてきた。これに関しても、UO₂燃料と同様の考え方でライブラリを作成することが提案されており、実際にそのように作成する事となる。BWRに関してはスペックが決定され、実作業を行うだけになっている。PWRに関しては、スペックがまだ決まっていないが、早々に決定されるものと思われる。

ここで問題なのは、御本家のORIGEN2との整合性である。しかしJENDL-3.2からライブラリを作成する作業は進展し、必要ならばユーザーが求めるライブラリを簡単に作成することができるようになった。ライブラリ作成の過程をトレースする事はできるということの、問題が起こったときの対処がしやすいという点からしてもうれしいことである。これらは一見よさそうではあるが、あまり細かくライブラリを作成すると、ORIGEN2の欠点であり長所である「どんな燃料でもソコンの計算を行う」という目的から外れてしまいはしないかという危険感が私のなかにあるのも確かである。つねにベストな値を求めるのも一つの方向性ではあるが、あえてそれを行ってこなかった。ORIGEN2の良さを損なわないように今後の作業を行う必要がある。
3 使用済燃料核種組成データベースの作成

ORIGENA2 用のライブラリが完成したところで、その妥当性を検証する必要がある。そのためには、使用済燃料の核種組成測定データの解析がもっとも効率的である。ORIGENA2 ライブラリ自身は特定の照射履歴の燃料の照射後試験を解析するために作成されていないので、直接的な比較はあまり意味が無いのであるが、それでも、ユーザーとして実験値との比較を行って、コードの計算値の傾向を把握する必要性を感じるものである。

このように、使用済燃料の照射後試験結果は重要であるのだが、公開になったデータは少ない注2。また、公開されたデータがあったとしても、その燃料のスペック等を調べるには、関連する多くの資料を拾って集めなければならない。そのために、公開された照射後試験の結果や、燃料のデータをまとめたデータベース SFCOMPO [8] が、原研で作成されている注3。

このデータベースに内蔵されているデータを、表 3.1 に示す。

PWR のデータは、1960 年代から 70 年代にかけて精力的に取得されてきたことがわかる。PIE データとしては、各同位体の質量が与えられているもののが、計算精度を検証する上で最も有用である。それは、核計算を行う場合に必要な原子個数密度を算出できるかどうかという問題にかかわるからである。その点、同位対比しか与えられていないものは、どこで値対値に変換をするだけの情報がなければ、それだけでは原子個数密度に変換できないので、コードの検証の観点からすると、値値は落ちてしまう。もちろん、まったくデータが無いほどは良いことに変わりはないのだが...

SF COMPO 自身は、多くのデータをまとめるという点において一定の役割を果たしたが、PC で稼動するデータベース上で作成されていたために、公開をする時点で非常に困った問題に直面することとなった。つまり、商用の（売り物の）アプリケーションであるデータベース用ソフトウェアを、無償で配布することは出来ないことである。そのため、せっかく作成したデータベースが利用されないという問題があった。もちろん、配布先がそのデータベースソフトを購入すればいいのだが、価格の点（20 万円）でそれはほとんど不可能のように思えた。

注2: メーカー等が中心になっておこなった作業もあるであろうが、それらは公開してない
注3: SF COMPO はシダマ委員会核種生成量評価 WG と、OECD/NEA/NSC Burnup Credit Criticality Benchmark WG における議論においてその必要とされた結果がある。
Table 3.1: SFCOMPO にデータが登録されている PIE

<table>
<thead>
<tr>
<th>REACTOR</th>
<th>COUNTRY</th>
<th>TYPE</th>
<th>MWd/T*</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yankee</td>
<td>USA</td>
<td>PWR</td>
<td>13,000-18,000</td>
<td>Before 66</td>
</tr>
<tr>
<td>Trino**</td>
<td>ITA</td>
<td>PWR</td>
<td>3,400-26,600</td>
<td>66-71</td>
</tr>
<tr>
<td>Obrigheim**</td>
<td>FRG</td>
<td>PWR</td>
<td>15,600-37,500</td>
<td>70-74</td>
</tr>
<tr>
<td>Garigliano</td>
<td>ITA</td>
<td>BWR</td>
<td>8,900-14,500</td>
<td>64-67</td>
</tr>
<tr>
<td>Gundremmingen**</td>
<td>FRG</td>
<td>BWR</td>
<td>14,400-27,400</td>
<td>69-73</td>
</tr>
<tr>
<td>Monticello</td>
<td>USA</td>
<td>BWR</td>
<td>40,300-58,700</td>
<td>74-82</td>
</tr>
<tr>
<td>Mihama-3**</td>
<td>JPN</td>
<td>PWR</td>
<td>6,900-31,400</td>
<td>78-82</td>
</tr>
<tr>
<td>Genkai-1**</td>
<td>JPN</td>
<td>PWR</td>
<td>36,100</td>
<td>75-79</td>
</tr>
<tr>
<td>Tsuruga-1</td>
<td>JPN</td>
<td>BWR</td>
<td>16,300-25,700</td>
<td>72-78</td>
</tr>
<tr>
<td>JPDR</td>
<td>JPN</td>
<td>BWR</td>
<td>130-5,500</td>
<td>63-69</td>
</tr>
<tr>
<td>Calvert Cliffs**</td>
<td>USA</td>
<td>PWR</td>
<td>27,400-44,300</td>
<td>77-82</td>
</tr>
<tr>
<td>TMI-2</td>
<td>USA</td>
<td>PWR</td>
<td>3,200</td>
<td>79</td>
</tr>
<tr>
<td>HB Robinson</td>
<td>USA</td>
<td>PWR</td>
<td>24,500-31,500</td>
<td>Before 75</td>
</tr>
<tr>
<td>Cooper</td>
<td>USA</td>
<td>BWR</td>
<td>17,800-33,900</td>
<td>Before 75</td>
</tr>
<tr>
<td>Fukushima-2-3**</td>
<td>JPN</td>
<td>BWR</td>
<td>17,800-33,900</td>
<td>Before 75</td>
</tr>
</tbody>
</table>

* Burnup is Assembly averaged burnup
** absolute isotopic composition is given
*** not stored in database (already opened)
このシステムを使った検索例を、以下の図3.1と3.2に示す。検索結果は、数値データとして与えられるものと、横軸を燃焼度としてプロットした図の2種類である。

Figure 3.1: SFCOMPO on W3による使用済燃料核種組成データの検索例（数値データの表示）

3.1 問題点

たしかに、PCで構築されたSFCOMPOの問題点はクリアされたが、データを公開するにあたって、アクセスコントロールをどうするかという問題が生じた。これまでの原子力コード等は、NEA Data Bankが配布する形で（日本ではRIST経由で）流通していた。ところが、管理者自身がデータの配布までを行うようなこのシステムには、これまでのコード管理の方法と相容れない部分がある。また、原子力関連の情報が規制されることなく、関係のない第三国に流れることが危険というのもあった。
現在は、ユーザー名とアクセストラストに対する認証を用いているが、将来的には、NEA 等が許可したユーザーに対してのみ利用許可を行うといった、統一的な手段が導入されることになろう。また、暗号化等を行った形でデータをやりとりする方法も検討されるかもしれない。ただし、これはブラウザーの側でも対応を行う必要があるのので、今後の技術的動向も睨みつつ作業となる。

4 結わりに

使用済燃料の同位体組成に関係する研究は、最近になってますますその重要性が高くなっているように思われる。そのような中で、ここで紹介したコードやデータが、今後の研究に役立つことを期待している。また今後の活動において、様々な分野の方のご意見をお聞きする機会があると思われる。その時は是非ご協力をお願いいたします。
参考文献

