核データ関係のロシア協力の現状と問題点

日本原子力研究所核データセンター
菊池 康之
e-mail: kikuchi@cracker.tokai.jaeri.go.jp

1. 序
ロシアの兵器関係研究者の第三国への拡散を防止するのを目的として、日米欧の資金でモスクワにInternational Science and Technology Center (ISTC) が設置され、兵器産業から平和産業への転換を支援するための援助を行っている。ISTC は 1994 年 3 月の正式発足以来、既に 300 件を超えるプロジェクトの応募を審議しており、かなりの数のプロジェクトがスタートしている。この中にはオメガ計画に関連した、マイナーアクチニドに関する核データの測定、評価等が 4 件日本の資金で認められている。これらにつきその内容、経緯、課題点などを述べるとともに、日本以外の出資による核データ関連プロジェクトと現在準備中のプロジェクトについても概略を述べる。

2. 日本の出資により進行中のプロジェクト
2.1 Evaluation of Actinide Nuclear Data (ISTC Proposal No.: CIS-3)
2.1.1 実施機関：Radiation Physics and Chemistry Problems Institute, Minsk, Belarus
2.1.2 責任者：Vladimir M. Maslov
2.1.3 期間・予算：3年、$169,000 ($71,000, $52,000, $46,000)
2.1.4 出資：日本（外務省一般拠出金）
2.1.5 協力機関：原研
2.1.6 経緯
1994年9月のISTC理事会で、日本の一般拠出金で支援が決定した。その後BeralusのISTC加盟手続きの終了を待ち、1995年3月1日付けでISTCとの契約が完了した。
2.1.7 研究内容
内容はマイナーアクチニドの完全な評価で、ENDF-6 Formatで提供される。評価核種
第1年度：^{243}Cm, ^{244}Cm, ^{246}Cm
2.2 Measurement of the Fission Neutron Spectra of the Minor Actinides.

Spontaneous Fission of Curium Isotope (ISTC Proposal No.: #183-P)

2.2.1 実施機関: V.I. Khlopin Radium Institute, St. Petersburg, Russia.

2.2.2 責任者: L.V. Drapchinsky

2.2.3 期間・予算: 1年, $150,000

2.2.4 出資: 日本(原研)、EU

2.2.5 協力機関: 原研、BELGONUCLEAIRE、COGEMA、ENEA

2.2.6 経緯

本プロジェクトは、オメガ関係のデータ取得として、当初原研から特別会計により出資することが予定されており、研究計画も原研と打ち合わせの上で作成された。しかし、特別会計による出資は、日本の国内法により種々の規制があり、特に知的所有権が日本政府にのみ帰属する規定は、ISTCの規定と抵触する。

そのため、1994年9月のISTC理事会では、日本からの出資が認められず、EU資金のみで採択となった。その後日本も原研の資金で参加するように方針を転換し、1994年12月理事会で半額出資が決定された。

この研究計画は、特別会計を考慮して単年度で作成されているが、KRIとしては5年以上の長期を希望しており、とりあえず2年間延長申請がISTCに出されるものと思われる。

2.2.7 研究内容

内容は、244Cm, 246Cmの自発核分裂スペクトルの測定である。このグループは、故Blinow教授の指導下で長年に亘りスペクトル測定を続けており、信頼度の高いデータが期待できる。

なお、KRIでは前述のように延長を希望しており、その際には以下の測定計画を立てる。

第2年度: 240Pu, 242Pu自発核分裂スペクトル（予算: $120,000$）

第3年度: 243Cm, 245Cm熱中性子核分裂スペクトル（予算: $150,000$）

第4年度: 247Cm, 241Pu（予算: $110,000$）
2.3 Measurements and Analysis of the Basic Nuclear Data for Minor Actinides

(ISITC Proposal No.: #304-P)

2.3.1 実施機関：Institute of Physics and Power Engineering, Obninsk, Russia

2.3.2 責任者：N.S. Rabotnov

2.3.3 期間・予算：2年、$600,000 ($300,000, $300,000)

2.3.4 出資：日本（原研）

2.3.5 協力機関：原研

2.3.6 経緯

本プロジェクトも2.2と同様に、オメガ関係のデータ取得として、特別会計で企画された。当初のプロジェクトはマイナーアクチニドの積分実験も含む“Investigation on the Problem of Minor Actinides Transmutation in Fast Nuclear Reactors” (#11-P) として提案されたが、核不拡散政策による米国の懸念により破棄されていた。その後核データ部分のみを独立させた #304-P として再提出され、1995年3月の理事会で承認された。

2.3.7 研究内容

研究内容は以下の5項目である。

1) Fission cross section measurements for minor actinides (B.I. Fursov)

\[{}^{238} \text{Pu}, \quad {}^{242m} \text{Am}, \quad {}^{243}, {}^{244}, {}^{245}, {}^{246}, {}^{247}, {}^{248} \text{Cm} \]

の核分裂断面積を 0.1 ～ 7 MeV の入射エネルギーで測定する。

2) Measurements of primay fragment yields for \[{}^{237} \text{Np} \] (A.A. Goverdovsky)

\[{}^{237} \text{Np} \]

の 0.8 ～ 1.3、5 MeV 中性子入射による核分裂収率を測定する。

3) Inelastic neutron scattering and prompt fission neutron spectra for \[{}^{237} \text{Np} \] (N.V. Kornilov)

\[{}^{237} \text{Np} \]

の非弾性散乱断面積及び即発中性子スペクトルを入射中性子 0.5 ～ 2.5 MeV で測定する。

4) Analaysis of discrepancies between the evaluated data for minor actinides and
development of improved evaluations (A.V. Ignatyuk)

BROND-2, JENDL-3, ENDF/B-VI のデータを比較し、不一致の原因を
検討し、最良値を推奨する。

5) Measurements of total yields and group constants of delayed neutrons from fast
neutron induced fission of 237Np (V.M. Piksaikin)

237Np の高速中性子核分裂の遅発中性子収率を測定し6群定数を得る。これ
らの測定は、IPPE で長年の経験を持つもので、JENDL Actinide File 評価に貴
重なデータが得られる。

これらの5項目の進歩を検討するため、半年毎にワークショップを計画している。
年度途中は Obninsk で、年度末には原研で開催したいとの意向である。

2.4 Spallation Experiment with Tungsten Target (ISTC Proposal No.: #157-P)

2.4.1 実施機関： Institute of Theoretical and Experimental Physics, Moscow, Russia

2.4.2 責任者： V.I. Belyakov–Bodin

2.4.3 期間・予算： 1年、$250,000

2.4.4 出資： 日本（原研）

2.4.5 協力機関： 原研

2.4.6 経緯：

当初オメガ計画のデータ取得として特別会計で出資を計画していたが、2.2 同様な
経緯で、1994 年 12 月の ISTC 理事会において日本（原研）の出資で承認された。

2.4.7 研究内容

高エネルギー核データの積分実験として、W の円筒ターゲットに 0.8, 1.0, 1.2
GeV の強力陽子ビームを打ち込み、体系内の反応率分布を放射化法で、発熱分布をカ
ロリメトリックに測定する。

この計画は 1 年で終了し、次年度以降は中性子を直接測定する方法の開発と、塩化物
ターゲットの実験を新規計画で提案する予定である。

3. 日本以外の出資で進行中のプロジェクト

3.1 Measurements of Activation Reaction Cross Section of Importance for Fusion

(ISTC Proposal No.: #176-P)

3.1.1 実施機関： V.G. Khlopin Radium Institute, St. Petersbung, Russia

3.1.2 責任者： A.A. Filatenkov

3.1.3 期間・予算： 2年、$140,000

— 27 —
3.1.4 出資：米国、EU
3.1.5 協力機関：ANL、PTB、原研
3.1.6 経緯
1994年9月のISTC理事会において米国、EUの出資で承認された。原研FNSも出資すべく努力中。
3.1.7 研究内容
14 MeV中性子の放射化断面積の内、IAEAの専門家会議で重要性の指摘された38核種を測定する計画である。原研FNSの測定と相補的な関係にある。

3.2 Development of the Nuclear Data System for Radiation Problems of High and Intermediate Energy (ISTC Proposal No.: #187-C)
3.2.1 実施機関：Moscow Radiotechnical Institute of the Russian Academy of Science, Moscow, Russia
3.2.2 責任者：B. Sychev
3.2.3 期間・予算：3年、$192,800 ($71,700, $59,700, $61,400)
3.2.4 出資：EU
3.2.5 協力機関：不明
3.2.6 研究内容
高エネルギー（20 MeV以上）の粒子（n、p、π、K等）のデータベースシステムの作成を目指している。具体的には実験値の収集・解析・評価、計算コードシステムの開発、データファイルの作成、誤差評価、マニュアル作成からなる。

3.3 Development of the Library of Evaluated Nuclear Data on Charged Particles for International Thermonuclear Experimental Reactor (ITER) and Other Appication of Thermonuclear Fusion (ISTC Proposal No.: #145-C)
3.3.1 実施機関：Russian Federal Nuclear Center-VNIIEF, Arzamas-16, Russia
3.3.2 責任者：B.Y. Guzhovsky
3.3.3 期間・予算：3年、$271,500 ($126,500, $85,100, $59,900)
3.3.4 出資：EU、米国
3.3.5 協力機関：EDF/DER, LLNL
3.3.6 研究内容
ITERに必要な荷電粒子反応ライブラリを作成する。IAEAのFENDL活動とも関係するものである。具体的には、
1) 荷電粒子と軽核反応の実験データベース作成
2) 他の核反応断面積の実験データベース作成
3) 評価とファイル作成

4. 提案準備中のプロジェクト

4.1 Measurement of Capture Cross-Sections on a Pulsed Neutron Source for the
 Nuclei, Forming Daughter Nuclei with Short Life Time in Basic and Metastable
 States (ISTC Proposal No.: #217)

4.1.1 実施機関: Russian Federal Nuclear Center—Experimental Physics Institute,
 Arzamas—16, Russia

4.1.2 責任者: A.V. Lirke

4.1.3 期間・予算: 2年, $160,165 ($ 101,338, $ 58,767)

4.1.4 研究内容

99 Tc と 129 I の熱中性子吸収断面積と共鳴吸収積分を原子炉スペクトル中で測定しようとするものである。日本でも名大グループがこの測定を既に行っており、比較のために協力研究を行うことが望ましい。

4.2 Measurements of Actinide Nuclear Data

4.2.1 実施機関: Russian Federal Nuclear Center—Experimental Physics Institute
 (RFNC—VNIIEF), Arzamas—16, Russia
 Joint Institute of Nuclear Research (JINR), Frank Neutron Physics
 Laboratory (FNL), Dubna, Russia
 Russian Research Center "Kurchatov Institute" (RRC—KI), Institute of
 General and Nuclear Physics (IGNR), Moscow, Russia

4.2.2 責任者: W.I. Furman (JINR—FNL)

4.2.3 期間・予算: 3年, $866,000

4.2.4 研究内容

ロシアの中性子核データ試験で著名な3研究所の合同プロジェクトとしてアクチノイド核データ測定を提案している。具体的には、

1) 238 U, 242 Pu, 241 Am, 247 Cm の同位体分離 (VNIIEF)
2) 236 U, 242 Pu, 241 Am, 243 Am, 245 Cm の核分裂断面積と半減期の測定 (VNIIEF)
3) 235 U (t, pt) 断面積測定 (VNIIEF)
4) 233 Pa と 235 Np 核分裂の遅発中性子収率測定 (232 Th(p.f), 238 U (p.f) による) (VNIIEF)
5) 234U, 236U, 237Np, 241Am, 243Am の 1 eV 〜 30 keV での核分裂、捕獲断面積及びγ線多重度測定 (RRC−KI)
6) 237Np の 1 eV 〜 200 eV の核分裂断面積及び核分裂幅の測定 (JINR)
7) 237Np の捕獲断面積の測定 (JINR)
8) 237Np、239Pu の遅発中性子収率測定 (JINR)
いずれも日本での測定の困難なものであり、JENDL Actinide File のためにも、是非支援協力したいプロジェクトである。

4.3 Neutron Induced Fission Cross Section of Some Actinides and Other Heavy Nuclei in the Intermediate Energy Range

4.3.1 実施機関：Petersburg Nuclear Physics Institute, Gatchina, Russia
V.G. Khlapin Radium Institute, St. Petersburg, Russia

4.3.2 責任者：O.A. Shcherbakov (PNPI)

4.3.3 期間・予算：1年、$140,000$

4.3.4 研究内容
PNPI の 1 GeV 鎳子シンクロトロンの TOF スペクトロメーターを用いて、233U、238U、239Pu、237Np、232Th、W、Pb、Bi の核分裂断面積を 200 MeV まで測定する計画である。
現在 200MeV までの中性子断面積の測定可能な施設は少なく（多分 LANL の LAMPF のみ）、高エネルギー核データ評価に極めて貴重なデータが得られると思われるので、是非支援協力したい。

4.4 Measurements of the Fission Neutron Multiplicity Distributions for Spontaneous Fission of Cm−244, Cm−248 and Fission of U−233, U−235 and Pu−239 Induced by Thermal and Low Energy Neutrons

4.4.1 実施機関：V.G. Khlopin Radium Institute, St. Petersburg, Russia
Petersburg Nuclear Physics Institute, Gatchina, Russia

4.4.2 責任者：V.I. Shpakov

4.4.3 期間・予算：1年、$140,000$

4.4.4 研究内容
核分裂中性子の多重度を核分裂片の質量及び運動エネルギーの関数として精密に測定しようとするもので、核分裂物理上興味あるテーマである。
5. 問題点

5.1 ISTCの将来

最近、米国議会の会計検査委員会がISTC活動を批判していると聞く。理由は、ロシアの軍事研究の不必要な部分をISTCの援助により切り捨てることによって、高度の軍事研究を集中的に行うことができ、結果的にISTCはロシアの軍事研究を助けていると言うことである。

この指摘は的外れとはいえず、日本の関係者にしても最近のロシアのチェチェン侵攻等を間接的に支援しているというやりきりなさを感じている人もいる。

しかし、ISTCプロジェクトでの核データ関係の研究は、日本側から見て非常に魅力的なものが多く、何とか成功させたいものである。

5.2 研究者の将来

ISTCの目的は、兵器科学者が平和産業へ移行するための経過措置としてその資金を援助することにある。そのため、各プロジェクトには半数以上の兵器科学者が入っていることが要求されている。

一方、ここで述べた核データ研究者はもともと兵器科学者ではない。勿論、ISTCの基準をクリアするために彼等は、「我々の得た核データは、核兵器開発に不可欠であったから我々は兵器科学者である」と主張しているが、もしそうなら原研の核データセンターもシグマ委員会も皆、兵器科学者になってしまい、彼等が何を主張しようと構わないが、彼等がプロジェクトでやっている研究は彼等が昔からやってきた研究で、その終了後も民生で自立できるように変身できるはずがない。

今はISTCの資金で給料は数倍上り極めてハッピーであるが、プロジェクト終了後はまた元に戻るだけであり、そのことを考えると気が重くなる。プロジェクト終了までにロシア経済が飛躍的に発展するのに賭けるしかない。