核データニュース, No.122 (2019)

最終講義

中性子と放射線計測

九州大学エネルギー量子工学専攻 石橋 健二* *現:九州環境管理協会 <u>ishibashi.kenji.132@m.kyushu-u.ac.jp</u>

1. はじめに

最終講義のタイトルは、九州大学エネルギー量子工学専攻で担当していた講座名を 使って「量子線物理計測の教育研究を振り返って」としていたが、学外者にも分かりや すいように現タイトルとした。実のところ、核データ以外をかなり含むので核データ ニュースに適さない面があるが、談話室なので大目にみていただければ幸いです。

私は九州大学工学研究科応用原子核工学専攻(旧名称)の博士課程の時に、高エネル ギー物理学研究所(KEK,旧名称)の受託大学院生として研究した。将来的に大型加速 器には超伝導磁石や超伝導加速空洞が必須になるという流れの中にあったので、超伝導 双極磁石の熱的安定性を研究テーマとした。博士号取得後、当時のフェルミ国立加速器 研究所では、ENERGY DOUBLER(TEVATRON)のプロジェクトが走っていて、同所の超 伝導磁石開発部門に2年半在籍した。この滞在時に米国の研究者が失敗を恐れずに大胆 に挑戦していく様子に触れ、博士号取り立ての立場からはその大きな気概に感銘を受け たことが記憶に残っている。

縁あって九州大学に戻って、出身の応用原子核工学科で教育研究を開始した。大学の 教育機関なので資金も研究装置も乏しい環境だったが、まずは所属研究室の研究テーマ の手伝いから始めた。所属研究室では、新しく始める研究テーマは何でも良いという 姿勢があって温かい環境にあった。研究の失敗を恐れないことにして、学生が興味を持 ちそうな夢のある研究テーマを探した。極低温や加速器の周辺で過ごした経験を基に、 概ね次の2つの研究に取り組むことにした。

○超伝導 X 線検出器と加速器実験用超伝導機器

○加速器駆動未臨界炉と高エネルギー中性子断面積

その後十数年して将来への期待感を込めて、サブテーマとして次の研究を加えた。 ○新エネルギーをめざした弱い相互作用の研究

2. 加速器実験用超伝導機器や超伝導 X 線検出器

小職が大学に赴任した頃、KEK では TRISTAN プロジェクトが走っており、電子陽電 子衝突実験グループの中に VENUS 共同研究グループがあった。同グループのドリフ トチャンバー用に薄肉大型超伝導ソレノイド磁石が製作されたが、当方はその超伝 導磁石用の電流リードの製作を担当した。KEK の和気正芳准教授の発案で、新しい 製作方法として導体にワイヤカッターでフィンを形成して流路を作り、図 1 に示す 電流リード(定格電流 4.1kA)[1]を製作した。その設計にあたり、当初は通常の手 順どおり導体の位置を変数として熱伝導方程式を立てて、レイノルズ数や熱伝達係 数を考慮して熱流入の最適化をした。計算を重ねるうちに、導体の温度の関数とし て定式化すると、レイノルズ数や熱伝達係数などの工学的関係を保ったままで一般 的に最適化結果を表示[2]でき、図 2 のように最適設計の結果が通電電流値に関わら ず適用できることが分かった。学生のときに工学では関係を一般化して広く適用す ることが重要であると教育を受けていたので、その思想が実現できて満足感があっ たことが印象に残っている。

図 2 最適化電流リードの設計チャート. 一般 冷却係数 γ_0 の関数として 1 規格化圧力損失 $\Delta P/C_f$, 2 導体寸法 D, 3 冷端熱流入 Q_c 実線, 破線, 一点鎖線は温端温度 T_{μ} =300, 250, 200K.

図 1 VIENUS 共同研究超伝導ソレノイ ド磁石用のディスクフィン型電流 リード.

超伝導磁石の実験で極低温や液体ヘリウムの取り扱いの経験があった。そこで、 半導体検出器よりも高分解能の検出器の候補として、超伝導X線検出器の開発研究 を始めた。電子技術総合研究所(電総研、旧名称)のジョセフソンコンピュータ開 発室の高田進室長を訪ね、同所のクリーンルームを利用してフォトリソグラフィー により X 線検出用のニオブ系トンネル接合を製作できるようになった。絶対温度 1 K 以下の測定環境が必要だったので、大学の放射線管理区域内にクライオスタットを 揃えて実験を行った。フォトリソグラフィー技術では漏れ電流を放射線計測レベル まで低減することは大変難しかったが、図 3 に示すニオブ系素子[3]で、図 4 のよう に X 線を検出することができた。しかし、漏れ電流低減が難しくて、その後のニオ ブ系トンネル素子の研究を継続できなかった。

一方、極低温 X 線検出器の研究は引き継がれ、同研究室の前畑京介准教授らは、 トンネル接合型ではなく、超伝導体の遷移端を利用する遷移端型の X 線検出器の研 究を開始して、超ウラン元素の非破壊検査に適用できる高分解能 X 線検出器の開発 に成功を収めた。しかしながら、産業技術総合研究所(旧電総研)のグループはそ の後十数年間、漏れ電流低減の技術開発を継続して推し進め、今では遷移端型 X 線 検出器よりも信号応答の速いトンネル素子の高分解能 X 線検出器の製作に成功して いる。次々に学生が入れ替わる大学では我慢が足りずに研究継続を諦めたが、同所 グループの地道で息の長い技術開発努力に敬服している。

図 3 シリコンチップ上のジョセフソントン ネル接合. 接合は中央部に位置し、大きさ 300 ~1000 µm のサイズである.

図4 5.9keVのX線のパルス波高分布.広い下 端ベース電極を使用した実験結果.

一方、私はKEKで博士課程を過ごしたことにより、研究の刺激や意識改革の面で 貴重な経験を得た。この体験があるので、KEK の先生の要望や学生個人の希望に応 じて、超伝導磁石や加速器理論などで意欲がある学生を派遣した。その後、その中 から現在研究所で活躍している人も出てきていて嬉しい限りである。また KEK 滞在 時に交流があった極低温機器メーカーの方々の学位論文の作成にも協力させていた だいた。その時々の研究室の活動の目安として、この分野の研究に関わった学位論 文テーマを次にまとめている(括弧書きは准教授指導教員)。(以下のテーマでも同様 の表を掲げている。)

1993 超伝導磁石用電流リードの設計法に関する研究 1996 パルス核磁気共鳴法を用いた加速器用双極磁石の磁場均一度測定に関する研究 2000 ビームコア振動によって誘起される非線形共鳴の大強度陽子ビームのハロー形成と平衡状態 への移行における役割 2002 磁場印加型マイクロストリップコイル集積型超伝導トンネル接合X線検出器に関する研究 2002 偏極水素原子線源に高周波遷移に関する研究 2002 高温超伝導電力機器用過冷却液体窒素冷却システムの研究 2004 液体メタン電離箱の放射線に対する応答特性の研究 2006 X線測定用誘電体マイクロカロリメータの要素技術の開発 2006 誘導加速シンクロトロンにおける高繰り返し誘導加速装置の開発と陽子ビーム加速の実証 2010 磁気浮上電極電離箱を用いた空間線量および放射線気体線量測定に関する研究 2010 核燃料サイクル施設における放射線防護の高度化に関する研究「プルトニウム汚染及びクリ プトンガスのモニタリング| 2011 (極低温におけるシンチレーション発光特性の測定法の開発) 2012 小型無冷媒希釈冷凍機の開発に関する研究 2013 レーザーイオン源を用いた大強度長パルス重イオンビームの生成に関する研究 2014 (超伝導転移端センサ型マイクロカロリメータにおける吸収体構造と超伝導薄膜の物理的特 性に関する研究) 2017 (分析電子顕微鏡用ポリキャピラリーX線集光レンズに関する研究) 2017 高温超伝導電力機器用ネオン冷媒冷凍機の開発 2017(固体検出器を用いた高放射線量下の放射線計測技術に関する研究)

4. 加速器駆動未臨界炉などに関わる中性子の測定・断面積

大学におけるテーマを探しているうちに、日本原子力研究所(原研、旧名称)の 中原康明氏らが提唱されていた加速器駆動未臨界炉に魅力を感じ、核燃料増殖やト リウム燃料の利用の将来性に惹かれた。その基礎研究として高エネルギー陽子によ る中性子生成(p, xn)二重微分断面積の実験データを得ることを考えた。KEK の陽子 シンクロトロン(KEK-PS)の内部標的からの陽子(0.8~3GeV)入射による(p, xn)中性 子を測定しようと計画し、KEK 物理研究系の吉村喜男教授の協力を得て実験を行う ことができた。実験準備の段階で、当方の実験の数年前に東工大物理学科の千葉簾 教授が予備実験されていたことを知り、同教授のエネルギー問題への造詣の深さと 先見の明に感心した記憶がある。

図 5 に実験の検出器の配置[4]を示す。最初の実験では、検出器への床散乱中性 子の影響を危惧して、検出器はできるだけ床から高く離すこととした。図6に架台 上の検出器を示す。床散乱中性子の影響を最小に抑えるために、検出器を入射ビー ム面より高い位置に設置した。内部標的陽子は2次ビームのためビーム強度が弱く て、距離1m~1.5m 程度の短距離TOFでしか測定できなかったが、飛行距離が短距離 であるため床散乱中性子などの影響の少ない実験データを得ることができた。実験 データは、図 7 に示すように、高度情報科学技術研究機構仁井田浩二氏らによる QMD+SDM コード[5]のパラメータ確認に役立った。 当時の原子核実験では中性子とガンマ線の弁別は、液体シンチレータ NE213 検出 器から信号を波形処理回路に入れて波形弁別を行うことが普通であった。当初はそ の方法で測定を試みたが、測定中性子エネルギーのダイナミックレンジが大きくて、 信号飽和の対策が必要だった。そこでもっと簡単に、検出器信号をそのまま CAMAC の電荷 ADC にいれてそのゲートのかけ方を工夫して波形弁別することにした (ゲー ト積分法)。この方法では専用の波形処理回路が不要になり、多くの検出器を使う実 験に適していた。実験企画調整室の中井浩二教授が、液体シンチレータでは中性子 とガンマ線だけでなく、その間のπ中性子も弁別できるかも知れないと意見を出さ れた。実際、実験のデータ整理をすると、π中間子も弁別されることが確認[6]され た。その後、高エネルギーの中性子測定では、国内外でゲート積分法が採用される ことになった。

液体シンチレータ NE213 の中性子検出効率の評価には、原研の明午真一郎氏らに よる実験データに拠った。明午氏らは加速器遮蔽を目的として厚いターゲットによ る積分実験の有効性に注目していたので、本実験の後に厚いターゲットの実験も行 い、積分実験のデータも取得[7]した。一方、液体シンチレータ NE213 の高エネルギー 中性子入射の場合の検出効率の評価には、中性子と炭素原子核の反応の寄与が大き くなる。そこで、シミュレーションコード SINFUL-QMD を作成[8]して、その評価が 行えるようにした。

KEK-PS の内部標的からの 2 次ビームは、陽子、 π 中間子、 μ 粒子が混在する。陽 子と $\pi \& \mu$ 粒子は飛行時間で分離できるが、 π 中間子と μ 粒子は質量が近いため飛行 時間だけでは区別ができない。そこでチェレンコフ検出器を使い μ 粒子を分離して、 π 中間子入射の測定を行った。床散乱中性子の効果の補正は大きく無いことが分 かったので、この実験では図 8 のように検出器をビーム平面上に置いて実験した。 これにより、 π 中間子入射 (π , xn)の実験データも得る[9]ことができた。

図 5 0.8-3.0GeV 陽子による (p, xn) 反応二 重微分断面積の実験における検出器の配置.

図 6 検出器架台上の液体シンチレータ NE213 検出器. 床散乱中性子の影響を最小 にするため、検出器を床から高く離した.

図 7 陽子入射中性子生成二重微分断面積の 実験データと QND+SDM による計算結果.

図 8 π入射中性子生成二重微分断面積の実 験における NE102A 液体シンチレータ NE213 検出器の配置. 床散乱中性子成分が小さな補 正で済むので、ビーム軸上に設置.

図 9 ロスアラモス WNR 中性子施設の(n, xn) 断面積実験におけるホスイッチ検出器の配 置.

陽子入射実験の後、米国ロスアラモス国立研究所の高エネルギー中性子施設 WNR での中性子入射中性子生成(n, xn)実験を考えた。中性子源からの距離 30m の実験室 での実験を想定して、その場所で中性子による反跳陽子の測定を計画した。反跳陽 子の測定には東北大の中村尚司教授の指導を受けて、NaI シンチレータの周囲にプ ラスチックシンチレータを作りつけて(ホスイッチ型)、両シンチレータの信号を波 形弁別して、反跳陽子だけの信号をとる方式を採用した。しかしながら、WNR では 距離 30m の実験室が混んでおり、実際に割り当てられたのは距離 100m の実験室で あった。図9の配置のように実験を行ったが、100m の場所では反応のイベント率が 少かったことに加えバックグランド中性子の影響が大きかった。当初の反跳陽子型 検出器では、最前方のホスイッチ型検出器の性能試験[10]だけになってしまったこ とが心残りである。

一方、加速器駆動未臨界炉では、KEKの柴田徳思教授の要請で、1.5GeV 陽子を想 定した加速器駆動未臨界炉の核設計研究を行った。京都大学原子炉実験所(京大炉、 旧名称)の森義治教授らのFFAG 加速器プロジェクトの研究項目に入れるための要請 であった。炉物理計算は初めてであったが、原研の佐々敏信氏の指導を受けて大学 院生が計算を担当した。燃料としてトリウムとウラン 233 の組み合わせでは、確か に、計算上は数年以上の長期運転が可能であった。

学生諸君の中には時々、研究に興味とこだわりの強い人がいる。研究室に志望し てきた学生には、計算が好きで、断面積計算コードを使って実験データを再現する 最良パラメータを得る核データ評価を好む人もいた。このような学生はその分野に 適性があって将来的に活躍してくれる場合が多いことを経験的に知っている。当人 の希望をいれて、中高エネルギー領域の中重核の核データ評価を担当してもらった。 この研究に関しては、核データセンター(旧名称)柴田恵一氏や当大学の渡辺幸信 教授の協力に感謝します。

一方、東芝の旧知の同級生から依頼を受けて、ガンマ線の巨大共鳴を利用して I-129 非破壊検査のための(γ,n)反応断面積測定を行った。京都大学原子炉実験所 (当時名称)の中島健教授、堀順一准教授の協力を得て同所の電子線形加速器によ る制動放射ガンマ線を使って実験を行った。制動放射ガンマ線のため電子エネル ギーを変えて実験してもガンマ線エネルギーの広がりは大きいが、JENDLの評価値 とほぼ一致する結果となった。

1995 高エネルギー陽子入射反応における中性子生成二重微分断面積の測定 1997 カスケード計算コードを利用した陽子入射フラグメンテーション反応断面積に関する研究 1998 高エネルギー領域における粒子輸送コードと実効線量に関する研究 1999 (治療用高エネルギー重粒子線の線質に関する研究) 2000 高エネルギー粒子入射による放射線損傷断面積とガンマ線生成二重微分断面積に関する研究 2002 高エネルギー粒子入射実験用ビームモニターの開発と鉄ターゲットからのガンマ線生成二重 微分断面積の測定 2003 高エネルギー陽子入射反応における最前方方向の中性子生成二重微分断面積の測定 2003 運動量 1.5GeV/c, 2.25GeV/c のパイ中間子入射反応による中性子生成二重微分断面積の測定 2004 中高エネルギー領域の粒子輸送現象及びそのシミュレーションの高度化に関する研究 2005 中高エネルギー領域の中重核に対する核データ評価および中性子入射中性子生成二重微分断 面積の測定手法に関する研究 2005 高エネルギー陽子・原子核反応からの2次粒子による遮蔽体への入熱に関する研究 2008 反跳 陽子法を用いた高エネルギー中性子検出器システムの開発とその応用に関する研究 2011 二重飛行時間法を用いた 1-8MeV 中性子による U-235 と Pu-239 の核分裂からの即発中性子ス ペクトルの研究 2012 有機シンチレータを用いた高エネルギー中性子および陽子生成二重微分収率の測定に関する 研究

2015 中性子エネルギー20MeV までのゼノンとクリプトンの同位体に対する核データ評価

5. こだわりの放射線計測

スリーマイル島やチェルノブイリ原発事故があった中、社会の動きの困難性に気 が付いた。世の中には理屈を超えて原発が嫌いという人がいて、いくら説明しても 理解してもらえずに、状況が揃えばそのような人々の声で社会の原子力発電の姿勢 も影響されうると思うようになった。原子核工学側でも、太陽光発電などより安定 した新エネルギーが欲しいところであり、それにサブテーマとして取り組み、10年 20年先に弱い相互作用の新しい反応機構が新エネルギーとして利用できる可能性に 期待した。弱い相互作用の典型的な相互作用断面積は10⁻⁴⁴cm²/MeV 程度であること は既知であるが、それは直接的な2体系の遷移行列要素を経由する場合であって、 keV 程度の低エネルギーの場合にはそれ以外の反応もありうることを前提にしてい る。このテーマについては当初から概ね留学生と一緒にやっていくことにしてきた。

2000年の数年前から着想があって生物系試料(生糸)を用いて予備実験を行った 後、動力炉核燃料開発事業団(動燃、旧名称)の新型転換炉ふげんの新沢達也氏を 訪ね実験の相談をした。同氏の協力を得て、炉心の近くで中性子やガンマ線は十分 に遮蔽されている場所で起電力生成を調べる電気化学実験を行った。原子炉の傍で は信号が大きくなり、ニュートリノの弱い相互作用の影響と推定[11]された。しか し、2001年9月11日の同時多発テロ以来、国内では動力炉への立ち入りが厳格に 規制され、実験が不可能になった。2015年になって、韓国原子力研究所 (KAERI)HANAROのGwang-Min SUN氏の協力を得て、韓国のPWRで実験が行えるよ うになった。韓国では水力原子力公社が原子炉の運転をしているため、民間会社と いうより公的な性格があって、KAERIや大学の要請があれば実験に道がひらかれて いた。韓国のNEOS共同研究の実験に相乗りして、原子炉に近い位置で実験ができる ようになり、図12のように信号の増加が観察された。

図 11 生物系試料による電気化学的起電力 発生装置

図 12 ふげん(165MW)及び PWR(1GW)の傍にお ける起電力の生成.

ふげんで実験した当時は、原子炉からの低エネルギー反電子ニュートリノよる反応で信号が生じると推定していた。その後、原子炉ニュートリノによる長距離振動 実験、短距離振動実験、重水を使った太陽ニュートリノの実験、つくば神岡間の T2K の電子ニュートリノ出現実験などが出てきた。これらの結果は標準理論の範囲外で あり、ニュートリノ振動の結果と整合するようなニュートリノの内部運動が示唆さ れる。ふげんと韓国 PWR での実験結果と合わせると、太陽からの低エネルギーミュー ニュートリノが特定の強い質量生成場の傍で、電子ニュートリノに変換してその際 のスピン移行反応によって信号が生成されるというシナリオが推定される。当然の ことながら、弱い相互作用の本質にかかわる部分があるので、しっかりした実験デー タと標準理論の理論家にも納得が得られるような定式化がないとジャーナルへの投 稿ができない。今後、実験と理論が揃ったサイエンスになっていくことを期待して いる。

2004 電気化学法に基づく小型装置による環境ニュートリノ検出の研究
2006 環境ニュートリノに対する電気化学的検出器の信号挙動に関する実験的研究
2008 原子炉からのニュートリノ束及びニュートリノの構造に関する研究
2009 スカラー補助場を利用したニュートリノ検出器および弱い相互作用の利用に関する研究
2011 ニュートリノの内部構造と質量生成に説明する理論的試み
2016 燃焼と炉型を考慮した低エネルギー反電子ニュートリノスペクトルの計算

6. まとめ

原子核工学はある意味では確立したものとも云えるが、できるだけその枠にとらわれ ないで教育研究することを志向してきた。長い間、超伝導、X線計測、中性子計測など に関連する研究に携わってきたが、この間、多くの先生や研究者の方々の薫陶・指導を 受けるとともに、研究室に入ってくる学生諸君との出会いがあった。多くの先生方や学 生諸君に深く感謝いたします。研究の開始に当たっては、失敗や見込み違いが起こりう ることを当然と思ってきた。それでも、思い返すと、トンネル接合で息の長い取り組み ができなかったこと、弱い相互作用では原子炉の実験が中断されたことなど、当初の期 待通りに進まないこともあったが、ある程度致し方ないところと理解している。

参考文献

- [1] K. Ishibashi, E. Murakami, et al., Cryogenics, 31, p.560 (1986)
- [2] K. Maehata, K. Ishibashi, et al., Cryogenics, 28, p.744 (1988)
- [3] K. Takeno, K. Ishibashi, et al., Jap. J. Appl. Phys., 30, p.1969 (1991)
- [4] K. Ishibashi, H. Takada et al., J. Nucl. Sci. Technol., 34, p.529(1997).
- [5] K. Niita, S. Chiba, et al., Phys. Rev. C 52, p.2620(1995).
- [6] T. Nakamoto, K. Ishibashi, et al., Rev. Sci. Instrum., 66, p.5327 (1995)
- [7] S. Meigo, H. Takada, et al., Nucl. Instrum. Meth. Phys. Res., A431, p. 521 (1999)
- [8] D. Satoh, S. Kunieda, et al., J. Nucl. Sci. Technol., 39, Suppl. 2, p.657 (2002)
- [9] Y. Iwamoto, N. Shigyo, et al., Phys. Rev. C70, 024602(2004).
- [10] T. Watanabe, H. Arakawa, et al, Nucl. Instrum. Meth. Phys. Res., A587, p. 20 (2008)
- [11] Liu Wei, K. Ishibashi et al., J. Nucl. Sci. Technol., 41, Suppl.4, 487 (2004).