An Integrated System for Production of Neutronics and Photonics Calculational Constants

UCRL-50400 Vol. 11, 12, 13

浅見明（原発）

表題は UCRL-50400 シリーズであって、これは全部で 13 巻よりなっている。このうち終りの 3 巻が、これから紹介するものである。1 巻から 10 巻まで、いつもも長い表題を持っているので省略するが、簡単に言えばこれらは、計算機システム、計算プログラム、文献、中性子核反応実験のインデックス、評価核断面積、光核反応断面積、積分中性子実験、核反応しよく値等である。

11 巻： EXPERIMENTAL DATA, INDEXES, AND TECHNIQUES OF OBTAINING A SELECTED SET OF NEUTRON RESONANCE PARAMETERS

by M. Gyulassy, R. J. Howerton, S. T. Perkins.

（May 1, 1972） 472 ページ

この巻では、52,000 個の、実験から得られた共鳴パラメータを揃え、適当な索引が附され、文献の目次とその極く簡単な内容の紹介がある。又収集されたデータから、分離及び非分離の共鳴パラメーターの一覧表の当る方法が述べられている。こうして得られた結果は、分離されたパラメーターについては次の 12 巻に表で示され、非分離パラメーターは 13 巻にあげられている。以上がこの巻の要約であるが、以下に各部をもう少しくわしく述べる。

（1）データの索引： 二つの方法で行う。一つは同位元素によるごく普通の方法で、Z A の大きくなる順（1000 2 + A）で配列する。もう一つは、任意につけられた access number と呼ばれる数の順に配列するので、この数がデータと文献をつなぐ。したがって文献番号と考えてよい。同位元素順の索引では、ISO-TYPE、CODES（preliminary か否か）、最小エネルギー、最大エネルギー、文献番号、データ数、データの種類（個々のパラメーターか平均か）の項目があげられている。

（2）共鳴パラメータ： 実験の解析結果として報告されているデータは 50780 個あり、7 枚のマイクロフィッシュカードに収められている。（本にとじこまれた封筒に入っている。）例えば Γ_n あるいは Γ_γ 等の単一の共鳴パラメータのみならず、それらの組合せた形で得られるもの、例えば σ_o, Γ_n / Γ_γ, $g \Gamma_\gamma \Gamma_n / \Gamma_\gamma$ 等も含まれており、その種類は 44 におよび、ついてでに、マイク
ロフィッシュのなかのページ数は１２１３である。

（3） 分離されない（Unresolved）パラメータ：１２７０個の分離されないパラメータが表で与えられている。ある場合実験データの解析から得られた値である。これらパラメータに含まれているものは、\(D_{\text{observed}} \), \(I_f \), \(I_n \), および \(S_f \) である。

（4） 資料： 共鳴パラメータの部分でマイクロフィッシュが用いられ、頁数をとらないため、この部品が最大の頁数となり、全体の過半を占める。従って、データの出所である誌名レポート類のリストがある。（データ自体は BNL の cross section center から得られた。）次に個々のデータについての文献ファイルがあるが、これに工夫がなされている。三種類のファイルが用意されている。第一のファイルでは誌名類の名前を A B C 順に並べたもので、同一誌名では巻号順、あるいはレポート番号年代順に順番にする。一つの文献には accession number がつけられ、非常に簡単に調べられるが実験方法の特徴が１～２行述べられている。規格化のための標準等についても、ここで述べられる。一つの文献で確認すべき他の文献も附記される。第二のファイルは、著者名を A B C で分類したもので、連名の著者名別に記されており、著者名に対し accession number が並ぶ。第三のファイルは第一のファイルと同一であるが、accession number の順に配列したものである。

（5） 解析の技法： 非常に多くの共鳴単位をとりあげるのですが、計算機を用いない事はできない。解析のプロセスは次の通りである。通常の種目について、各共鳴単位毎にデータを分類する。そのさい、かけ離れ値のデータを拾ってまり、修正をほどこした。これらデータは、①最近の高分解放データと照らす古いデータ、②高分解放の実験結果では見られない余計な共鳴、③特異な実験あるいは解析方法で、信頼性の疑わしいもの等である。エネルギーについては、\(E_0 = E(A+B E_{1/2}) \)、ここで A, B は定数で、もとのエネルギー E を \(E_0 \) にシフトすることができる。共鳴エネルギーをこの形で示す時は、他のエネルギー依存量もすべて必要で補正をすること、このあと平均値を計算する。

軌道角運動量 \(L \) を決定するのに、BAYES THEORFM を用いられるようになっている。これは統計テストであり、ともと \(128 U \) に対して、Bollinger, Thomas により用いられたものを一般化したものである。（Phys. Rev. 171, 1293 (1968））Wigner 分布、Porter–Thomas 分布を仮定して、相対値の \(L \) を計算する。
12巻：AN ATLAS OF RESOLVED NEUTRON RESONANCE PARAMETERS
by M. Gyulassy, S. T. Perkins (Sept 1, 1972) 1372ページ

前巻で述べられたように、実験で得られた51,000個の共鳴パラメータについて取捨選択を行い、最良のパラメータセットを作る。(Selected Setと呼ぶ)方法については前巻の終わりで述べられた。この巻ではその結果を表で示す。平均をとるのに使用された実験データも一緒に示してある。従って実験データは、両方の巻に記載されているわけだが、前巻では実験データがすべてそのまま記載され、この巻では最良パラメータを導くのに使用されたものだけで、必要な場合エネルギーをずらす補正がほどこされた後データがあげられている。

データ解析方法で、前に述べた事以外の基本的なルールには下記のものがある。

(a) monoisotopicであること。（isotopeが決定されている共鳴単位では、二種以上のisotopeのある元素をサンプルとしたデータでもよい）

(b) 負の共鳴は取扱わない。

(c) 全幅Iは、実験データから独立に最善の値を定め、部分幅の最善値の和として決定したものではない。

データの取捨選択、および修正には次の三つのものがある。

(a) 一つの文献について、ある判定のエネルギー領域のデータを削除する。

(b) ある元素について、判定の年代以前のデータを削除する。

(c) エネルギーシフト。これは前巻で述べた。

(d) BAYES TESTを用いて軌道角運動量を決定する。

こうして削除あるいは修正された文献の表が、同位元素順に表で示される。この巻の殆ど全部は、共鳴パラメータの表で占められる。その実例を一つあげる。（第1表）

13巻：AN ATLAS OF UNRESOLVED NEUTRON RESONANCE PARAMETERS
by M. Gyulassy, S. T. Perkins (Sept 1, 1972) 723ページ

実験で得られた51,000個の共鳴パラメータから、最良の共鳴パラメータセット（Selected Setと呼ぶ）を作り、結果が前巻に収められた。この巻では、これら最良のパラメータを用いて非分離の共鳴パラメータを計算した結果が、表にまとめられている。なお平均値を求めるのに使用した図も、補足としてのせてある。

これら非分離パラメータを得るための解析について、基本的ないくつかのルールを次にあげる。

(a) 分離された共鳴パラメータの場合と同様に、monoisotopicであること。

-18-
(b) パラメータのある数列を各々数の数が10個以下の場合、誤差が大きくなるので平均をとるための階段状のプロット（Staircase plot）は用いなかった。

(c) gI_n^ℓ の平均値は、個々のgI_n^ℓ の平均として計算され、強度関数（Strength function）から求めることはなかった。

(d) gI_n^ℓ の計算に必要な核半径は、1.45Å $^{1/3}$ ととられている。

(e) 共鳴パラメータの一部を削除することによって、結果が改善されると考えられる場合、その部分は削除された。（例えば、P波共鳴の単位間隔を求める場合、低エネルギー部でP波共鳴があり、その上のエネルギー部に不明の部分があり、更に高いエネルギー部でP波共鳴がある場合、低エネルギー部の共鳴を削除。）非分離パラメータの表の例を第2表にあげる。
Table 1

Resolved Resonance Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>DE</th>
<th>J</th>
<th>L</th>
<th>Gam-T (MeV)</th>
<th>DG</th>
<th>GGap-N (MeV)</th>
<th>DG</th>
<th>Gam-G (MeV)</th>
<th>DG</th>
<th>S-YR-Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.150E+00</td>
<td>3.536E-02</td>
<td>1.5</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>SELECTED</td>
</tr>
<tr>
<td>1</td>
<td>1.150E+00</td>
<td>0.0</td>
<td>1.5</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>52 462</td>
</tr>
<tr>
<td>1</td>
<td>1.150E+00</td>
<td>5.000E-02</td>
<td>1.5</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>51 2407</td>
</tr>
<tr>
<td>2</td>
<td>2.215E+01</td>
<td>1.200E-01</td>
<td>1.5</td>
<td>1</td>
<td>1.000E-01</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>SELECTED</td>
</tr>
<tr>
<td>2</td>
<td>2.215E+01</td>
<td>1.200E-01</td>
<td>1.5</td>
<td>1</td>
<td>1.000E-01</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>59 2412</td>
</tr>
</tbody>
</table>

Table 2

Resolved Resonance Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>DE</th>
<th>J</th>
<th>L</th>
<th>Gam-T (MeV)</th>
<th>DG</th>
<th>GGap-N (MeV)</th>
<th>DG</th>
<th>Gam-G (MeV)</th>
<th>DG</th>
<th>S-YR-Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.552E-01</td>
<td>4.434E-03</td>
<td>2.5</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>1.026E-01</td>
<td>1.803E-02</td>
<td>0.0</td>
<td>0.0</td>
<td>SELECTED</td>
</tr>
<tr>
<td>2</td>
<td>2.506E-01</td>
<td>0.0</td>
<td>2.5</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>8.360E-02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>C 68 3054</td>
</tr>
<tr>
<td>2</td>
<td>2.550E-01</td>
<td>0.0</td>
<td>2.5</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>9.580E-02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>C 56 484</td>
</tr>
<tr>
<td>2</td>
<td>2.550E-01</td>
<td>1.000E-02</td>
<td>2.5</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>1.329E-01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>C 54 114</td>
</tr>
<tr>
<td>2</td>
<td>2.600E-01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>C</td>
<td>1.000E-01</td>
<td>2.000E-02</td>
<td>0.0</td>
<td>0.0</td>
<td>C 71 3139</td>
</tr>
</tbody>
</table>

Table 3

Resolved Resonance Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy (MeV)</th>
<th>DE</th>
<th>J</th>
<th>L</th>
<th>Gam-T (MeV)</th>
<th>DG</th>
<th>GGap-N (MeV)</th>
<th>DG</th>
<th>Gam-G (MeV)</th>
<th>DG</th>
<th>S-YR-Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.557E-01</td>
<td>3.720E-03</td>
<td>3.0</td>
<td>1</td>
<td>3.600E-02</td>
<td>1.273E-02</td>
<td>3.263E-02</td>
<td>2.431E-03</td>
<td>7.000E-08</td>
<td>3.000E-08</td>
<td>SELECTED</td>
</tr>
<tr>
<td>2</td>
<td>2.500E-01</td>
<td>0.0</td>
<td>3.0</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>59 354</td>
</tr>
<tr>
<td>2</td>
<td>2.540E-01</td>
<td>3.000E-03</td>
<td>3.0</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>71 313</td>
</tr>
<tr>
<td>2</td>
<td>2.560E-01</td>
<td>0.0</td>
<td>3.0</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>2.700E-02</td>
<td>6.000E-03</td>
<td>0.0</td>
<td>0.0</td>
<td>56 484</td>
</tr>
<tr>
<td>2</td>
<td>2.560E-01</td>
<td>0.0</td>
<td>3.0</td>
<td>1</td>
<td>0.0</td>
<td>C</td>
<td>3.132E-02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>51 73</td>
</tr>
<tr>
<td>2</td>
<td>2.570E-01</td>
<td>0.0</td>
<td>1</td>
<td>2.700E-02</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>54 265</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.700E-01</td>
<td>0.0</td>
<td>2.0</td>
<td>1</td>
<td>4.500E-02</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>50 0</td>
</tr>
</tbody>
</table>
Table 2

Unresolved Resonance Parameters

<table>
<thead>
<tr>
<th>L</th>
<th>J</th>
<th>A_res</th>
<th>A_num</th>
<th>A_gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C.5</td>
<td>225</td>
<td>225</td>
<td>79</td>
</tr>
<tr>
<td>1</td>
<td>ALL</td>
<td>185</td>
<td>185</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>415</td>
<td>410</td>
<td>79</td>
</tr>
</tbody>
</table>

Resolved Data Classification

<table>
<thead>
<tr>
<th>L</th>
<th>J</th>
<th>A_res</th>
<th>A_num</th>
<th>A_gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C.5</td>
<td>225</td>
<td>225</td>
<td>79</td>
</tr>
<tr>
<td>1</td>
<td>ALL</td>
<td>185</td>
<td>185</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>415</td>
<td>410</td>
<td>79</td>
</tr>
</tbody>
</table>

Average Level Spacing (MeV) and Neutron Strength Functions from Staircase Plots

<table>
<thead>
<tr>
<th>L</th>
<th>J</th>
<th>A_res</th>
<th>A_num</th>
<th>A_gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>0.5</td>
<td>225</td>
<td>2.20E-05 1.3E-05 9.2E-1C 3.903E-03 175</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ALL</td>
<td>185</td>
<td>7.64E-06 5.3E-06 9.2E-1C 7.874E-04 102</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>415</td>
<td>6.64E-06 4.2E-06 2.5E-1C 1.903E-03 268</td>
<td></td>
</tr>
</tbody>
</table>

Average Neutron Widths (MeV) and Average Gamma Widths (MeV)

<table>
<thead>
<tr>
<th>L</th>
<th>J</th>
<th>A_res</th>
<th>A_num</th>
<th>A_gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>C.5</td>
<td>225</td>
<td>2.34E-09 3.3E-09 1.7E-11</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>ALL</td>
<td>185</td>
<td>3.45E-09 3.4E-09 7.5E-11</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ALL</td>
<td>2</td>
<td>1.25E-08 1.4E-05 4.9E-10</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>0</td>
<td>0</td>
<td>C</td>
</tr>
</tbody>
</table>