話 題

1. AEC—ANL International Conference on Sodium Technology and Large Fast Reactor Design (Nov. 7—9, 1968)

能沢 正雄 （原 研）

標記の会議のProceedingが最近になって送られてきたので、おそらく見逃してしまったが、出席した印象を記したい。高速炉に関する国際会議はANLに長い実績があり、またEBR—Ⅰ、EBR—Ⅱと高速炉の開発ではANLがその基礎的研究所も含めて長い経験の蓄積がある。高速炉の臨界実験装置としてのZPR—Ⅲ、ZPR—M、ZPR—K、ZPPRはほとんど米国での独自的な地位を占めている。

ナトリウム技術の方は会場が分れていて私は全然出席しなかった。後者の方の会議では、現在世界で稼動している高速炉の現状など、大形高速炉の設計についての話を主であった。出席者はアメリカ、ドイツ、フランス、イギリス、イタリア、日本から多く、イギリスは論文を出さず、3名の出席、ソ連も論文で出席もなかった。このANLの会議のすぐあとに、ANS—AIP合同主催のワシントン国際会議があり、ここでも高速炉の問題が論じられたが、ANSの学会発表を除きパネルディスカッションが主である。

発表は、現在稼動中の高速炉の現況としてEBR—Ⅱ（米）、ラプソディー（仏）、エンリコ・フェルミ炉（米）についての紹介から始まった。EBR—Ⅱは、先頃いったんそのウラン入りの半径を方向ブランケット管をステンレス管に変更したが、動特性に思わしくない性質が見られ、その後これらをもう1度ウラン入りに戻したことが報告された。ラプソディー炉はかっての公表出力であった20MWtを26MWtで運転に運転しており、その反応度特性が燃焼の進行とともに変化する模様を報告した。これは燃料棒の中のウランプルトニウムの混合酸化物ペレットが燃焼によって割れたり、膨張したりして被覆管にくっつくことからくるものと見られている。エンリコ・フェルミ炉からは、燃料溶融を起した原因となったジルコニウム板を取り出す作業について報告した。
（昨年1月はじめ、めでたくすべての板を除去に成功している。）

イタリアは高速実験炉としてのPECの設計を詳細に述べ、大形炉の設計も発表した。フランスは目下建設を進めている高速原形炉のフェニックスについて発表している。日本からは、原研からの発表として1966年（第1次）、1967年（第2次）にまとめた二つの形式の大形高速炉の設計研究が岩城、能沢、塩宮、高橋（次）、寺沢らによって作成して紹介された。また原研で行なった原形炉のパラメーターサーベイの結果が発表によって発表された。

米国の発表は、1964年に行なわれた米国4社（GE、WE、CE、AC）の大形高速炉（1000MWt容量）の設計研究の続きであって、その間に1965年第1回目の改訂版は発表され

—10—
ている。現在ではGE、WE、CEの他にAC（アリスチャルマー）に更ってBW、AIが登場し5社となった。これらの1968年版の発表の特徴は、もはやNa係数を逃げるための特殊な形式の炉心構造は採られなくなったことである。すなわち極端に薄いバンケーキ形の炉心とか、分割した小炉心を集めたモジュラー炉心はほとんど影をひそめてしまった。これはNa係数が危険でなくななるというよりも、ドップラー係数のより信頼できる値が得られるようになったこと、Naの過熱時の特性が分らはじめたこと、速度炉の安全性をより現実的に考えるようになったことなどの結果である。炉心の組成は原子炉、強度的、核的なことを総合的に検討されて決められるものであるが、各社の発表は酸化物炉心でもその増加比が1.30以上と高い値を出していることが注目された。

興味のある事は、CE社が1964年に高さ76cmの円柱炭化物炉心で設計していたのを、今回60cmの高さのものを検討しているのに対して、GE社は1964年に60cmだった酸化物扁平円柱炉心を今回76cmの高さに変更していることだった。いずれにしても将来炉の炉心については簡単な形状変更で円柱炉心となることは間違いないと思うのである。

事故時の反応度挿入の想定では、今までの事例ナトリウムボイドの発生を仮定することではなく、ナトリウム破面に入っているアルゴンガスの炉心通過を想定し、より現実的な検討が行なわれるようになった。