低速中性子による \((n,\alpha)\) 反応

岡本浩一（日本原子力研究所）

低速中性子による \((n,\alpha)\) 反応は、軽い核を除き、エネルギー的には可能であっても、反応のQ値がクーロン障壁の大さいに比較してかなりの値であり、更に\(\alpha\)崩壊過程が他の\(\gamma\)放出過程と競争できることが必要であり、一般にはこの反応の起こることは非常に少ない。中等核とし、希土類領域では\((n,\alpha)\) 反応のQ値が10−10 MeV程度の比較的大きいものがあり、ある核種においては低速中性子による\((n,\alpha)\) 反応が検出されている。この反応について、カナダのMcFarlane、ソ連のAndreevとPopovらの外、イスラエル、日本、ベルギー、ポーランドで実験が行われている。とくに\(^{149}\)Sm\((n,\alpha)\)\(^{146}\)Ndの反応がとり上げられているが、その大きな理由の一つは、中性子を捕獲した複合核\(^{150}\)Smから\(\alpha\)崩壊による進移\(^{146}\)Ndの\(0^+\)の基底状態への変移に興味があるからである。\(^{149}\)Sm+nの共鳴では、中性子エネルギーの低い方から0.098、0.88、5.0 eVの共鳴の全てが\(J^\pi=4^-\)であり、これら共鳴からの\(^{146}\)Ndの\(0^+\)基底状態への\(\alpha\)変移は禁止されている。ところが低速中性子による\((n,\alpha)\)反応でこの変移エネルギーに相当する\(\alpha\)粒子が見つかること。実は\(^{149}\)Smの共鳴解析をおこなっている二三の報告から、しかし実に少ない共鳴単位から\(\alpha\)変移があり、かつその単位が\(3^-\)であることに現在考えられている。\(^{149}\)Smに限らず、\(^{147}\)Sm\(^{145}\)Ndその他にも同反応の存在が知られているが、何しろその反応の確率が捕獲状態からの\(\gamma\)線放射出確率の百万分の一程度といった小さいものであるため、使用される中性子源としては原子炉中性子そのままである。ただし2200 m/sの運動した反応断面積は上記各国で完全に一致していなかった。最近、核構造国際会議に出席したソ連のFrankの報告では、DubnaのIBR炉を用い、とくに\(^{149}\)Sm、\(^{147}\)Smによる\((n,\alpha)\)反応を100 eV以上200 eVまでの共鳴について各共鳴からの\(\alpha\)崩壊の全数を出す実験が精力的に行われている様である。一方のカナダのMcFarlaneらは、同様に電場をかけ、\(\alpha\)粒子をらせん軌道を画いて炉内より取り出し、\(\alpha\)線のバックグラウンドの低い所で、より正確に一つの共鳴から\(^{146}\)Ndの各エネルギー単位への変移の分岐を出す実験を行いはじめている。中等核の\((n,\alpha)\) 反応はさらに重い核の\(^{235}\)Pu等の低速中性子による\((n,\alpha)\) 反応を三重核分裂の際の放出\(\alpha\)粒子と区別して調べるという方向へ一つの方向として発展していくであろうが、実際ポーランドでは種々工夫をこらした実験が計画中であるようだがまだ成果は報告されていない。