第17回夏期セミナー

The effect of ion irradiation on amorphization and volume change in model materials of concrete aggregates

Luu Vu Nhut¹, Kenta Murakami¹, Ippei Maruyama², Kiyoteru Suzuki³

¹ Nagaoka University of Technology, ² Nagoya University, ³ Mitsubishi Research Institute

A part of this study was the results from the "Japan Concrete Aging Management Program on Irradiation Effects (JCAMP)" sponsored by METI in Japan

Introduction Degradation of concrete biological shield wall

- Diversity of composition of siliceous rock aggregates ^{#1}
- Quartz (SiO₂) and aluminosilicate minerals (i.e., albite(NaAlSi₃O₈), microcline(KAlSi₃O₈)) are common minerals and have high susceptibility to amorphization ^{#2}

^{#1} G. Igarashi et al, Constr. Build. Mater (2015); ^{#2} Y. Le Pape et al, J. Adv. Concr. Technol (2018); ^{#3} Maruyama et al, J. Adv. Concr. Technol (2017); ^{#4} T.M. Rosseel et al, J. Adv. Concr. Technol (2016)

Introduction Hypothesis on amorphization and RIVE

Research methodology

Result and Discussion: main cause of RIVE in case of quartz

"Empirical model" for change of step height H using ion fluence Φ :

 $H = H_{\infty}[1 - exp(-\sigma_s \phi)]$

Swelling cross section, σ_s (the magnitude of the volume expansion due to a single radiation)

*Normalised step height is step height H divided by ion range R

- Quartz exists in most of aggregates, easy to be amorphized, and highest RIVE, thus it can be used as an indicator of RIVE effects in concrete
- It is found that both knock-on and ionization process contribute to RIVE:

knock-ons

$$\sigma_s[10^{-14}cm^2] = \left[0.0072\left(\frac{N_d}{R}\right)\right] + \left[0.13\left(\frac{E_i}{R} - 1.6\right)\right]$$

Ionization

However, in neutron irradiation, kinetic energy by displaced ions is small (bellow 10⁵ eV), thus RIVE is mainly related to number of displacement, dpa.

Thus, the onset of RIVE can be determined as:

<u>Result and Discussion</u>: RIVE mechanism in aluminosilicate minerals

RIVE is due to short range and long range change of tetrahedra

Quartz: RIVE continues after amorphization.

Long-range and short-range change contribute to RIVE

Albite: small additional RIVE

Mainly long-range contribute to RIVE

Microcline: no additional RIVE

Only short-range

Luu V. N, et al, JNM, 545 (2021) 152734

Result and Discussion: Reference level for concrete degradation

Indicator of degradation: reduction in (1) compressive strength, (2) shielding performance, and (3) seismic resistance.

Damage estimation after 60 years

- The RIVE in guartz starts at around 0.04dpa, but concrete's strength could reduce beyond 0.02dpa, this \geq may be related to the radiation-induced drying effect.
- The estimated maximum damage in term of dpa for 60 years is below 0.04 dpa, suggesting RIVE will not \geq occur during LTO. However, the degradation probably caused by drying is about 4cm in thickness.

Summary of results

- Though both ionization and knock-on process contribute to RIVE, number of knock-on atoms is found to be the main cause of RIVE in LWR condition.
- The mechanism of RIVE is found to be different in silicate minerals which is related to alkali contents (K⁺, Na⁺).
- A new reference level of 0.02dpa, which is considered the diversity of neutron spectrum, is proposed for concrete degradation

Significance of the study

- The degradation mechanism caused by irradiation in concrete during LTO was investigated.
- Importantly, in current modelling codes, RIVE is considered to be saturated at amorphization, but we found RIVE may continue after amorphization. The obtained property changes are important input for meso-scale modelling code to evaluate the performance of concrete during LTO.

Thank you very much for your attention!

