シビアアクシデント評価に関する調査研究報告書(中間報告)

平成 25 年 11 月

ー般社団法人 日本原子力学会 「シビアアクシデント評価」研究専門委員会

目次

1.	緒言		
	1.1	背景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1-	1
	1.2	シビアアクシデント研究の現状 ・・・・・・・・・・・・・・・・・・・ 1-	1
	1.3	目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	2
	1.4	参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	2
2.	PIRT	-SWG	
	2.1	事象進展解析の課題の抽出(熱水力 PIRT) ・・・・・・・・・・ 2-	1
	2.2	ソースターム評価の課題の抽出(ソースターム PIRT) ・・・・・・ 2	3
	2.3	まとめ ・・・・・・・・・・・・・・・・・・・・・・・ 2	4
	2.4	参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2-4	4
3.	SAMPS	SON-SWG	
	3.1	はじめに ・・・・・・・・・・・・・・・・・・・・・・・ 3-	1
	3.2	SAMPSON コードの開発経緯と概要 ・・・・・・・・・・・・・ 3-	1
	3.3	SAMPSON-SWG の活動概要 ・・・・・・・・・・・・・・・・・ 3-	3
	3.4	SAMPSON コードに関する検討状況 ・・・・・・・・・・・・・・ 3-	3
	3.5	まとめ ・・・・・・・・・・・・・・・・・・・・・・ 3-	5
	3.6	参考文献 ・・・・・・・・・・・・・・・・・・・・・・ 3-6	6
4.	結言	$\cdots \cdots $	1
付翁	录 A	Phenomena Identification and Ranking Tables (PIRT) for Fukushima-daiic	hi
		Accident	

付録 B 論文リスト

委員リスト

主査	岡本 孝司	東京大学
幹事	吉田 啓之	(独)日本原子力研究開発機構
	中島 清	(株)三菱総合研究所
	石渡 祐樹	東京大学(日立 GE ニュークリア・エナジー(株))
	山野 秀将	(独)日本原子力研究開発機構
委員	阿部 豊	筑波大学
	伊丸岡 浩充	(株)東芝
	植田 伸幸	原子力安全推進協会
	大川 富雄	電気通信大学
	笠原 文雄	(独)原子力安全基盤機構
	片岡 勲	大阪大学
	越塚 誠一	東京大学
	杉本 純	京都大学
	杉山 憲一郎	北海道大学
	高瀬和之	(独)日本原子力研究開発機構
	内藤 正則	エネルギー総合工学研究所
	川部 隆平	(独)原子力安全基盤機構
	永武 拓	(独)日本原子力研究開発機構
	中村 秀夫	(独)日本原子力研究開発機構
	奈良林 直	北海道大学
	西 義久	電力中央研究所
	末廣祥一	(株)テプコシステムズ
	溝上 伸也	東京電力(株)
	湊 明彦	アドバンスソフト(株)
	守田 幸路	九州大学
	森 治嗣	北海道大学
	守屋 公三明	日立 GE ニュークリア・エナシ゛ー(株)
	山口彰	大阪大学
	山本 章夫	名古屋大学
	山本 泰	(株)東芝
	石井 佳彦	日立製作所(株)
	岡 芳明	早稲田大学
	木倉 宏成	東京工業大学
(敬称略	, 順不同)	

1.1 背景

今般の福島第一原子力発電所におけるシビアアクシデントの事象進展を再現するために は、解析コードによるシミュレーションが必要である。既存のシビアアクシデントの事象 進展を時系列に沿って再現できる解析コードとしては、MAAP、MELCOR、SAMPSON、THALES 等 が挙げられる。これらは、炉心及び圧力容器の損傷の時刻、水素及び放射性物質の放出と 言った、シビアアクシデントに伴う諸現象を模擬できる。解析コードは、事故時の複合現 象のうち支配的な物理モデルを数値化するとともに、ある条件を仮定して計算するもので あり、解析結果はプラント情報として得られた原子炉水位、原子炉圧力、格納容器圧力、 放射線線量率等の測定データにより検証できる。ただし、解析コードによる事故の再現に は、ある程度の不確かさが含まれることに留意する必要がある。そのため、政府事故調報 告書 II.1(3)節に記述されているように、事象進展を十分に再現できないなどの解析上の課 題を解決できるように研究を進め、より信頼性の高い解析コードとすることが強く望まれ る。

1.2 シビアアクシデント研究の現状

これまで数十年にわたり、多くのシビアアクシデント研究が実施され、その研究成果が まとめられている[1-1][1-2]。シビアアクシデントの諸現象には、ジルコニウムー水反応、 溶融炉心の再配置、蒸気爆発、燃料ー冷却材相互作用、直接格納容器加熱、溶融炉心-コ ンクリート相互作用、水素爆発、放射性生成物(FP)エアロゾル挙動といった熱流動の要 素が多い。これらの現象解明のための実験が日米欧を中心に多く実施され、得られた実験 的知見を踏まえ、日米欧で上述の様な解析コードが開発されてきた。我が国で使用されて いる解析コードは、米国で開発された MAAP と MELCOR のほか、日本原子力研究開発機構で 開発された THALES とエネルギー総合工学研究所で開発された SAMPSON がある。また、圧力 容器破損防止のため、炉容器内保持(IVR)といった、シビアアクシデントマネジメントも 考えられている。

実験及び解析研究を踏まえて、日本原子力学会では、炉心溶融から環境への放射性物質 の放出する事象シーケンスの頻度とソースタームを確率論的に評価するレベル2PSA(確率 論的安全評価)標準を策定した[1-3]。ソースタームとは、環境に放出される放射性物質の 種類、性状、放出量、放出時期、放出期間、放出エネルギーで定義される。つまり、この ソースタームを適切に評価できれば、福島第一原子力発電所の事故時に発電所敷地外に放 出された放射性物質量を定量的に評価できると言える。しかしながら、シビアアクシデン ト後期では不確かさが大きく、未解明の現象も少なくない。

1.3 目的

現在,福島第一原子力発電所事故の事象進展を解明するため,各機関でシミュレーショ ンが行われている。同時に,解析コードの限界も理解されつつあり,解析コードの改良に 着手する必要がある。そこで,解析コードの効果的な改良に必要な,改良の優先付けなど を行うため,日本原子力学会熱流動部会では平成23年12月に「シビアアクシデント評価」 研究専門委員会(平成23年12月〜平成25年11月)を発足した。本委員会では,PIRTサ ブワーキンググループ(PIRT-SWG)とSAMPSONサブワーキンググループ(SAMPSON-SWG)を 設けて効率的に議論を重ねた。PIRT-SWG では,事象進展解析とソースターム評価について シミュレーションの課題を摘出するため,関連知見の調査を行い,シビアアクシデント時 の様々な現象を抽出し,重要項目を選定することを目的とした。SAMPSON-SWGでは,我が国 で開発された機構論的シミュレーションコード SAMPSON をエネルギー総合工学研究所より 貸与いただき,福島第一原子力発電所事故の事象進展解析のための,シミュレーションに 対する課題を摘出することを目的とした。本報告書は,PIRT-SWG及び SAMPSON-SWG の調査 研究をまとめたものである。

1.4 参考文献

- [1-1] 成合,杉山,ほか「シビアアクシデントに関する熱流動研究の最近の動向」日本原 子力学会誌 39 巻 9 号 739-752 頁 (1997).
- [1-2] I. Kataoka, "Review of Thermal-Hydraulic Researches in Severe Accidents in Light Water Reactors," J. Nucl. Sci. Technol., Vol. 50, No. 1, pp. 1-14 (2013).
- [1-3] 日本原子力学会「日本原子力学会標準 原子力発電所の出力運転状態を対象とした 確率論的安全評価に関する実施基準(レベル2PSA 編):2008」AESJ-SC-P009:2008 (2009).

2. PIRT-SWG

2.1 事象進展解析の課題の抽出(熱水力 PIRT)

福島第一原子力発電所事故の事象進展を解明するためには、シビアアクシデント解析コ ードによる炉心の溶融及び移行挙動、並びにソースターム評価を行う必要がある。また、 燃料デブリの取り出しを含む中長期的な廃止措置に取り組むためには、炉心溶融物の存在 位置及び分布を推定することが不可欠である。そこで、事象進展解明及び炉内状況把握の ための解析コードの予測精度を高めることを目的として、事象進展解析に係る課題を抽出 した。課題の抽出にあたっては、3号機を検討対象とし、1号機及び2号機の特有のシナ リオについては、3号機シナリオの枠組みの中で適宜補足することとした。

課題の抽出には、PIRT (Phenomena Identification Ranking Table)という手法を用いた。 PIRT とは、設計評価項目と流動上の各基本単位で発生する現象を表形式で組み合わせ、評価結果への影響の大きさ等の観点で専門家によりランク付けすることで、発生現象の重要度を考慮して課題を抽出できる表作成の手法及び表の作成結果である[2-1]。欧州では、PWRのシビアアクシデントを主な対象として、多くのシビアアクシデント研究者によって PIRTを実施し、1000 程度の現象を同定し、106 個の重要かつ知見不足の現象を抽出した[2-2]。 今回の PIRT においては、BWR を対象として、海水の注入などの福島第一原子力発電所事故特有の現象も取り入れる必要がある。

3号機では、地震発生/原子炉スクラム、RCIC 起動、津波襲来/全電源喪失、RCIC 停止、 (代替格納容器スプレー)、HPCI 起動、HPCI 停止、原子炉減圧操作、外部注水、炉心露出、 (格納容器ベント)、炉心損傷による崩落、下部ヘッドへの炉心溶融物移行、原子炉容器損 傷、格納容器への炉心溶融物移行、水素爆発といったシナリオが想定される。本 PIRT では、 これらのシナリオを5つの時間フェーズに分割し、原子炉スクラムから燃料の溶融開始ま でを第1フェーズ、炉心領域からの移行開始までを第2フェーズ、原子炉容器破損までを 第3フェーズ、格納容器破損までを第4フェーズ、水素爆発までを第5フェーズとした。 図 2-1 に事象進展に対するフェーズを示す。

プラントシステムは、原子炉容器内・格納容器内・原子炉建屋内の3つに大別した。さ らに、原子炉容器内では、炉心、シュラウドヘッド、スタンドパイプとセパレーター、ド ライヤー、上部ヘッド、主蒸気ライン、上部ダウンカマー、下部ダウンカマー、下部ヘッ ド、再循環ループの10個の物理領域(サブシステム・機器)に分割した。格納容器内では、 ペデスタルキャビティ、ドライウェル、ドライウェルヘッド、ベントライン/ウェットウ ェルダウンカマー、ウェットウェルの5個に分割した。原子炉建屋内では、アイソレーシ ョンコンデンサー、原子炉建屋の部屋、非常用ガス処理系、オペレーションフロア、ブロ ーアウトパネル、使用済み燃料プール、設備プールの7個に分割した。

同定された現象の重要度レベルを決めるためには主要な指標が必要となる。PIRT で、この指標を FoM (Figure of Merit)と呼び、各時間フェーズにおいて選定する必要がある。FoM

は、第1フェーズでは被覆管最高温度と燃料最高エンタルピ、第2フェーズでは炉心平均 温度、第3フェーズでは原子炉容器壁最高温度と下部ヘッド内コリウム最高温度、第4フ ェーズでは格納容器最高圧力及び温度、第5フェーズではガス(水素,酸素,水蒸気)濃 度と設定した。

現象の同定には,現在利用可能な情報及び知識レベルでブレーンストーミングを行うこ ととした。同研究専門委員会に係るメンバーは熱流動及びシビアアクシデント解析の専門 家ではあるが,燃料については核燃料部会の専門家の協力も得た。毎週2回程度の集中議 論を行い,FoMに影響を与える事象について詳細度には必ずしもこだわらず,考え得るもの を抽出する方針とした。その結果,原子炉容器内では 677 件,格納容器内では 358 件,原 子炉建屋内では 124 件の計 1159 件が抽出された。

次に、同定された現象についてランク付けを行うため、各時間フェーズで FoM に影響を 与える重要度を定義した。High (H)は FoM に大きく影響, Medium (M)は FoM に中程度に影 響, Low (L)は FoM にほとんど影響しない, Not Applicable (N/A)は FoM に無関係とするこ ととした。

併せて,現状の知識レベル(State of Knowledge:SoK)も3分類に設定した。Known(K) は,現象がよく理解され,実験データや解析モデルにおける不確かさが小さい。Partially known(P)は,現象は一般的に理解されているが,実験データが限られ解析モデルにおける 不確かさが中程度であり,更なる研究が必要である。Unknown(U)は,現象がよく理解され ておらず,実験データがほとんどなく解析モデルにおける不確かさが大きく,解析は仮定 に大きく依存するものであり,現象を理解するためには研究が必須である。

ランク付けは、専門家による議論を通じて行われた(詳細は付録A参照)。その結果、表 2-1 に示すような重要度レベル及び知識レベルのランキングが明示された(詳細は表 2-5 参 照)。同定された現象 1159 件から、重要度が高く(H)、知識レベルが十分でない(P 又は U) 現象を抽出すると、208 件と集約された。さらに再整理した上で、大項目に整理すると、表 2-2 に示すように 88 件に集約された。全体的には、炉心から離れるに従って、知識レベル が K に対する P と U の比率が高くなり、知識が十分でなくなる傾向がある。現象の重要度 については、事象進展を左右するシビアアクシデント特有の熱流動的現象に加えて、計装 配管等の破損など燃料やガスの移行経路となる部位の挙動が重要であることが示された。 再臨界は起こりにくいと考えられるが、万一発生した場合には影響が大きいことから重要 度が高いと示された。また、コリウム内の混合物質の性状や物性値も挙げられている。福 島第一発電所事故特有の海水の影響も選定されている。これらの整理の中から、特に重要 と考えられる事象について以下に列挙する。

燃料と構造物間の輻射伝熱, 炉心部コリウム移行挙動, 計装管溶融などの挙動, 主蒸気管等の FP 沈着による発熱, コリウム凝固と再溶融, デブリベッド特性・ 挙動, 溶融金属酸化反応, 溶融プール特性, コリウム・下部ヘッド間ギャップ 冷却, 再臨界, 下部ヘッド・制御棒案内管などの損傷過程, 下部ヘッドからの コリウム流出挙動, 海水影響, ペデスタル部コリウム移行, ペデスタル壁の酸 化, MCCI, ベデスタル部サンプ内コリウム挙動, ドライウェル部からの漏えい, DCH, 漏えいパスにおけるFP沈着, ベローズの損傷と漏えい, ウェットウェル 部からの漏えい, 格納容器破損箇所からの水素漏えい, 原子炉建屋内水素拡散 混合挙動

福島第一事故の事象進展を評価するために,現象として重要なものが抽出されている。 これらについては、シミュレーションコードによってモデル化されていない現象もあり、 これらの影響評価を今後実施し、また必要に応じてモデル化を進める必要がある。従って、 本 PIRT の結果を踏まえて、解析コードの高度化のために研究計画を具体化する必要がある と考える。

2.2 ソースターム評価の課題の抽出(ソースターム PIRT)

福島第一原子力発電所事故のソースターム評価には、大気拡散からのソースターム推定 方法 (SPEEDI コードを用いた逆推定) と事象進展解析からのソースターム推定方法 (MELCOR コード等を用いた順推定)の異なる方法がある。両者を組み合わせてソースターム評価の 精度を向上させる努力を進めているところである。ここでは、上述の事象進展解析コード のソースターム評価の予測精度を高めることを目的として、ソースターム評価に係る課題 を抽出した。

前節と同様に,課題の抽出には PIRT 手法を用いた。ただし,事象進展解析と異なり,ソ ースターム PIRT では FoM が環境へのソースターム放出量となる。そのため,抽出される現 象,ランキングの重要度レベル及び知識レベルを整理する必要がある。

ソースターム評価は、環境への放出の観点から事象晩期に起こる現象の方が重要である ことから、前節の第3フェーズまでをひとまとめにした。よって、時間フェーズは3分割 にし、原子炉スクラムから原子炉容器破損までの早期、原子炉容器破損から格納容器破損 までの中期、格納容器破損以降(格納容器破損後、2~3週間程度)の後期と設定した。プ ラントシステムの分割は、基本的には前節と同様だが、ソースターム評価に必要なものに 限定される。専門家の協力を得て、前節と同様のブレーンストーミングを行い、現象を同 定した結果、68件が抽出された。

重要度レベルと知識レベルのランク付けを行うため,EURSAFE[2-2]と同様に,専門家に よる投票を行い,整理した。ある閾値を用いてランク付けを行った後,そのランキングに ついて議論を行い,表 2-3 に示すようなランキング結果が明示された(詳細は表 2-6 参照)。

本 PIRT においてランキングが High となった現象を重要事象として表 2-4 に整理した。 これらは,福島第一原子力発電所事故における環境へのソースターム放出量予測という 観点で重要と判断された現象である。早期フェーズでは,圧力容器内での現象が多く抽 出され,特に溶融燃料からの FP 等の放出(2108)が高い得点を示した。中期以降のフェ ーズでは,圧力容器の外での挙動が多く抽出されており,特に MCCI やヨウ素化学に関 する事象が重要事象として数多く挙げられる傾向が見られた。また,同表で挙げられた 事象のうち現状の知識レベル(SoK)が P,又は U については,解析コードによる事故 進展解析技術の高度化といった観点で優先度が高い項目と考えらえる。

本 PIRT の結果を踏まえて, 解析コードの高度化のための研究計画を具体化する必要があ ると考える。

2.3 まとめ

福島第一原子力発電所でおきたシビアアクシデント現象の把握,さらには事故で放出さ れたソースタームを評価するためには,解析コードによるシミュレーションが欠かせない。 そのシミュレーションの評価精度を向上するため,事象進展及びソースターム評価の2つ の観点から PIRT を実施し,課題の抽出を行った。今後,本結果を踏まえて,実験も含めて 解析コードの高度化のための研究計画が具体化されるべきである。

なお、本 PIRT も定期的に見直し、より充実していくことが必要である。

2.4 参考文献

- [2-1] G.E. Wilson and B.E. Bouyack, "The role of the PIRT process in experiments, code development and code applications associated with reactor safety analysis," Nucl. Eng. Des., Vol. 186, pp. 23-37 (1998).
- [2-2] D. Magallon, A. Mailliat, et al., "European expert network for the reduction of uncertainties in severe accident safety issues (EURSAFE), "Nucl. Eng. Des., Vol. 235, pp. 209-346 (2005).

図 2-1 時間フェーズの設定(上段:熱水力 PIRT, 下段:ソースターム PIRT)

									重	要度し	ノベル							左口	幸しべ	, п	Н 8.	項
Э Х	物理領域	同定され	第	§ 1 71	-7	角	育 2 フェ-	- X	第	3 71-	ズ	第	5471-	ズ	第	5 71-	ズ	재	調レハ		Por	目
ŦĹ	(サブシステム・機器)	た現象	Η	М	L	Н	М	L	Н	М	L	Η	М	L	Η	М	L	К	Р	U	U	整理
原子炉	炉心	178	16	39	36	52	69	48	47	42	87	5	12	161	4	38	132	67	102	9	54	12
内	シュラウドヘッド	32	0	1	26	0	1	31	0	1	31	0	3	29	0	6	26	17	12	3	0	0
	スタンドパイプ/セパレータ ー	32	0	0	29	0	4	28	0	4	28	4	3	25	7	2	23	16	14	2	2	1
	ドライヤー	24	0	0	24	0	4	20	0	4	20	4	1	19	6	3	15	11	6	7	2	1
	上部ヘッド	24	0	2	22	1	6	17	1	6	17	4	6	14	3	7	14	11	9	4	1	1
	主蒸気ライン	32	0	7	22	5	8	18	5	8	18	3	7	21	5	7	0	0	5	2	1	1
	上部ダウンカマー	31	1	3	26	0	5	26	0	5	26	2	12	17	1	12	18	20	6	5	0	0
	下部ダウンカマー	123	2	6	38	2	7	37	42	49	31	0	23	100	1	9	113	28	82	13	0	9
	下部ヘッド	164	0	3	26	1	1	32	78	41	19	21	72	70	14	52	97	25	123	15	0	18
	再循環ループ	37	0	0	29	0	2	29	2	4	31	0	3	34	2	8	27	17	13	7	0	0
	小計	677	19	61	278	61	107	286	175	164	308	43	142	490	43	144	465	212	372	67	60	43
	ペデスタルキャビティ	140	0	0	40	0	0	40	0	0	40	69	35	36	54	37	49	24	97	19	67	13
	ドライウェル	105	0	0	50	0	0	50	0	0	50	46	31	28	39	30	36	16	74	15	45	11
	ドライウェルヘッド	33	0	1	28	1	1	30	1	1	30	14	5	14	17	2	14	14	17	2	4	4
格納谷器内	ベントライン/ウェットウ ェルダウンカマー	40	0	0	36	0	0	36	0	0	36	7	7	26	5	5	30	10	23	7	6	5
	ウェットウェル	40	0	0	33	0	0	34	0	0	34	9	9	22	12	7	21	12	22	6	3	2
	小計	358	0	1	187	1	1	190	1	1	190	145	87	126	127	81	150	76	233	49	125	35
	アイソレーションコンデン サー	16	0	9	4	3	2	8	2	2	12	0	2	9	0	4	9	7	9	0	2	1
	原子炉建屋の部屋	65	0	0	10	0	0	10	0	0	10	0	0	11	17	35	13	5	60	0	17	7
F - -	非常用ガス処理系	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	1	0	0	0
原子炉	オペレーションフロア	30	0	0	9	0	0	9	0	0	9	0	0	9	4	11	15	0	30	0	3	2
建度闪	ブローアウトパネル	4	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	3	1	0	1	1
	使用済み燃料プール	6	0	0	4	0	0	4	0	0	4	0	0	4	0	2	4	0	6	0	0	0
	設備プール	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
	小計	124	0	9	27	3	2	31	2	2	35	0	2	33	23	56	42	16	108	0	23	10
		1159	19	71	492	65	110	507	178	167	533	188	231	649	193	281	657	304	713	116	208	88

表 2-1 熱水力 PIRT で同定された現象,重要度レベル,知識レベル

注) 重要度レベルではH:High, M:Medium, L:Low。知識レベルではK:Known, P:Partially known, U:Unknown。

No.	RPV or PCV	Subsystem Component	Phenomena	1st Phase FoM: Fuel Rod Enthalpy	2nd Phase FoM: Enthalpy or Avr.Temp. for Core Region	3rd Phase FoM : RPV wall or Corium Maximum Temp.	4th Phase FoM: Maximum Press. and Temp. in PCV	5th Phase FoM: Concent. of Hydrogen, Oxygen and Steam	SOK
1	RPV	Core	Zr-Water Reaction	Н	Н	М	L	Н	Ρ
2			Heat transfer between core materials	N/A	Н	Н	Н	L	Р
3			Radiation heat transfer between corium and structures	N/A	Н	Н	L	L	Р
4			Melting of control rod	N/A	н	М	L	L	Р
5			Physical properties of core materials	N/A	н	Н	М	М	Р
6	1		Corium relocation	N/A	Н	Н	М	М	Р
7	1		Molten pool behavior	N/A	Н	Н	L	L	Р
8			Oxidation reaction between corium and water	N/A	L	Н	L	М	U
9	1		Solidification of corium	N/A	н	Н	Н	М	Р
10			Melting of corium (particle and crust)	N/A	н	Н	L	L	Р
11	1		Re-criticality	N/A	н	Н	L	L	Р
12			Instrumentation tube related behavior	N/A	М	Н	М	Н	Р
13		Standpipe & Separator	FP deposition/accumulation	L	М	М	Н	Н	Ρ
14		Driyer	FP deposition/accumulation	L	М	М	Н	Н	Ρ
15		Upper Head	FP deposition/accumulation	L	М	М	Н	Н	Р
16		Main Steam Line	FP deposition/accumulation	L	н	н	М	н	Ρ
17		Lower	FP accumulation at leakage path	М	Н	Н	Н	Н	U
18		down	Heat transfer between core materials	N/A	N/A	Н	М	L	Р
19			Corium relocation	N/A	N/A	Н	М	М	U
20			Fuel-coolant interaction (FCI)	N/A	N/A	Н	М	М	Р
21			Solidification of corium	N/A	N/A	Н	L	L	U
22			Melting of corium (particle and crust)	N/A	N/A	Н	L	L	Р
23			Physical properties of core materials	N/A	N/A	Н	L	L	Р
24			Debris bed properties and behavior	N/A	N/A	Н	L	L	Р
25		Lower	Heat transfer between core materials/structures	N/A	N/A	Н	М	М	U
26		head	Debris bed properties and behavior	N/A	N/A	Н	М	L	Р
27			Oxidation reaction between structures/molten metal	N/A	L	М	L	Н	Р
28			Corium relocation	N/A	N/A	Н	М	М	Р
29			Molten pool behavior	N/A	N/A	Н	М	L	Р
30			Fuel-coolant interaction (FCI)	N/A	N/A	Н	М	М	Р
31			Solidification of corium	N/A	N/A	Н	М	L	Р
32			Physical properties of core materials	N/A	N/A	Н	М	М	U
33			Melting of corium (particle and crust)	N/A	N/A	Н	L	L	Р
34			Re-criticality	N/A	N/A	Н	М	L	Р
35			Formation of gap between corium and lower head	N/A	N/A	Н	М	L	Р
36			Crack formation in lower head	N/A	N/A	н	М	М	Р
37			Mechanical/Chemical damage of lower head	N/A	N/A	Н	Н	М	Р
38			Material relocation through control rod guide tubes	N/A	N/A	Н	Н	н	Р
39			Material relocation through SRM/IRM/TIP/ICM	N/A	N/A	н	Н	н	Р
40			Radiation heat transfer between corium and structures	N/A	N/A	Н	L	н	Р
41			Melting of lower head material	N/A	N/A	н	Н	н	Р
42			Sea salt effect	N/A	N/A	Н	Н	н	U

表 2-2 熱水力 PIRT で重要度が高く知識レベルが十分でない現象の整理(1/2)

43 PCV	Pedestal	Heat transfer between core materials/structures	L	L	L	Н	Н	Р
44	Cavity	Debris bed properties and behavior	N/A	N/A	N/A	Н	L	Р
45		Corium relocation	N/A	N/A	N/A	Н	Н	U
46		Molten corium concrete interaction (MCCI)	N/A	N/A	N/A	Н	Н	U
47		Heat transfer between core materials	N/A	N/A	N/A	Н	Н	Р
48		Re-criticality	N/A	N/A	N/A	Н	L	Р
49		Oxidation reaction of pedestal wall	L	L	L	М	Н	Р
50		Fuel-coolant interaction (FCI)	N/A	N/A	N/A	Н	Н	Р
51		Direct Containment Heating (DCH)	N/A	N/A	N/A	Н	Н	Р
52		Pedestal water level change	L	L	L	Н	М	Р
53		Melting of structures in pedestal internal	N/A	N/A	N/A	Н	Н	U
54		Corium flow into sump pit	N/A	N/A	N/A	Н	Н	Р
55	Drywell	Deposition situation of corium on pedestal floor	N/A	N/A	N/A	Н	М	Р
56		Corium leak into connecting piping inside sump	N/A	N/A	N/A	Н	Н	Р
57		Leakage through containment vessel penetration	L	L	L	Н	Н	U
58		Heat transfer between core materials/structures	L	L	L	Н	Н	Р
59		Drywell water level change	L	L	L	Н	М	Р
60		Molten corium concrete interaction (MCCI)	N/A	N/A	N/A	Н	Н	U
61		Direct Containment Heating (DCH)	N/A	N/A	N/A	Н	Н	Р
62		Crust properties and formation/remelting behavior	N/A	N/A	N/A	Н	Н	Р
63		Re-criticality	N/A	N/A	N/A	Н	L	Р
64		Oxidation reaction of drywell structures	L	L	L	М	Н	Р
65		Melting of structures in drywell internal	N/A	N/A	N/A	Н	Н	U
66		Heat release from drywell wall	L	L	L	Н	Н	Р
67	Drywell	Mechanical damage of drywell head	L	L	L	Н	Н	Р
68	Head	Pressure loss of bulk head plate in head	L	L	L	М	Н	Р
69		FP accumulation at leakage path	М	Н	Н	Н	Н	U
70		Direct Containment Heating (DCH)	N/A	N/A	N/A	Н	Н	Р
71	Drywell	Mechanical damage of pipe line	L	L	L	Н	Н	Р
72	vent line and	Direct Containment Heating (DCH)	N/A	N/A	N/A	Н	Н	Р
73	downcomer	Change of failure crack area on bellows	L	L	L	Н	Н	Р
74	to Wetwell	Leakage through bellows	L	L	L	Н	н	Р
75		Water level change in Drywell/Wetwell ventilation line	L	L	L	Н	М	U
76	Wetwell	Mechanical damage of wetwell	L	L	L	Н	Н	Р
77		Leakage from wetwell	N/A	N/A	N/A	Н	Н	Р
78	Isolation Condenser	Leakage from wetwell	L	Н	Н	N/A	М	Ρ
79 R/E	R/B	Gas/water leak	N/A	N/A	N/A	N/A	Н	Р
80	Compartm	PCV ventilation piping sheet degradation	N/A	N/A	N/A	N/A	Н	Р
81	Circa	Gas reflux flow through PCV ventilation line and stack	N/A	N/A	N/A	N/A	н	Р
82		Gas reflux flow through PCV	N/A	N/A	N/A	N/A	Н	Р
83		Mixing and accumulation	N/A	N/A	N/A	N/A	н	Р
84		Hydrogen flame and combustion	N/A	N/A	N/A	N/A	Н	Р
85		Gas mixing and composition fraction change	N/A	N/A	N/A	N/A	н	Р
86	Operation	Gas mixing and composition fraction change	N/A	N/A	N/A	N/A	Н	Р
87	floor	Hydrogen flame and combustion	N/A	N/A	N/A	N/A	Н	Р
88	Blowout Panel	Opening of the blowout panel	N/A	N/A	N/A	N/A	Н	Ρ

表2-2	熱水力PIRTで重要度が高く	(2/2) 知識レベルが十分でない現象の整理(2/2))
12 4			/

		同定さ	重要度レベル									「「「」」、ベー			H &
システム	物理領域(ソースターム放出)又は特徴	れた現	れた現 初期				中其	月		後期		재히	眼レイ	~//	P or
		象	Н	М	L	Н	М	L	Н	М	L	Κ	Р	U	U
	炉心(炉容器内での放出)	14	4	9	1	1	7	6	0	3	11	3	4	7	4
医乙烷中	原子炉容器・配管(炉容器内での移行)	10	1	9	0	1	9	0	0	6	4	9	1	0	0
原于炉内	計装配管等(炉容器から格納容器への移行)	3	2	0	1	3	0	0	3	0	0	0	3	0	3
	小計	27	7	18	2	5	16	6	3	9	15	12	8	7	7
	ペデスタルキャビティ(格納容器内での放出)	2	0	0	2	1	1	0	1	1	0	1	1	0	1
	ドライウェル/ウェットウェル(格納容器内	16	1	6	٥	2	11	0	2	11	1	12	4	0	2
格納容器	でのエアロゾル挙動)	10		0	9	2	14	0	5	11		12	4	0	2
内	トップヘッドフランジ等(格納容器から建屋	5	0	0	5	2	0	2	л	0	1	0	1	1	4
	への 移行)	5	Ŭ	Ŭ	5	J	U	2	4	U		Ŭ	4		4
	小計	23	1	6	16	6	15	2	8	12	2	13	9	1	7
原子炉建	原子に建屋 (建屋内でのエマロジル券動)	2	0	0	2	0	0	2	1	1	0	1	0	1	0
屋内	尿」が 定住(定住的 この エ) ロ ノル 手動)	2	Ŭ	U	2	U	U	2	1	1	Ŭ		U		U
*	ヨウ素化学反応	13	0	5	7	1	11	1	13	0	0	0	11	2	13
*	ヨウ素化学形態	3	0	1	2	0	2	1	3	0	0	1	1	1	2
合計			8	30	29	12	44	12	28	22	17	27	30	13	29

表 2-3 ソースターム PIRT で同定された現象,重要度レベル,知識レベル

注) 重要度レベルではH:High, M:Medium, L:Low。知識レベルではK:Known, P:Partially known, U:Unknown。

ヨウ素化学は格納容器及び原子炉建屋で見られるため、*で表記。

表 2-4 ソースターム PIRT のスクリーニンク結果(I

		時	間フェー	・ズ	A W
番号	現家	早期	中期	後期	Sok
1. In-ve	essel Release				
2106	Pellet form change and radionuclides release	High			Р
	at the time of the clad rupture				
2107	Radionuclides release after pellet is exposed	High			U
	to the atmosphere in the core by clad melting				
2108	Radionuclides release from molten fuel	High	High		U
2111	Influence on iodine/cesium chemical form and	High			U
	hydrogen production from molten/re-solidified				
	fuel due to the B4C control rod existence				
2.Gas/#	Aerosol Behaviour in Vessel, Loop, and Steam 1	ine			
2201	Condensation/Re-vaporization/Adsorption	High	High		К
3. Trans	sport in RPV and PCV				
2301	Leakage via instruments, penetration, etc	High	High	High	Р
2302	Leakage via gasket	High	High	High	Р
2303	Leakage by RPV damage		High	High	Р
4. Ex-ve	essel Release				
2401	MCCI (Concrete erosion)		High	High	Р
5. Aeros	sol Behaviour in Containment				
2501	Scrubbing by steam flow from SRV to S/C	High			К
2502	Scrubbing with the vent from D/W to S/C		High	High	Р
2503	Scrubbing due to water injection to the			High	Р
	pedestal floor				
2507	Condensation / Re-vaporization / Adsorption		High		Κ
2513	Deposition by gravitational settling			High	K
6. Trans	sfer out of Containment				
2601	Leakage via instruments, penetrations,		High	High	Р
	gasket, etc				
2602	Wetwell vent		High	High	Р
2603	Drywell vent		High	High	Р
2605	Migration of radioactive material by the			High	U
	injection water into the reactor				
7. Aeros	sol Behaviour in Reactor Building				
2701	Aerosol Behaviour in Reactor Building			High	K

$X = \gamma $	表 2-4	ソースターム PIRT のスクリーニング結果 ((2/2)
--	-------	--------------------------	-------

亚日	та <u>А</u>	時	間フェー	·ズ	O V
香亏	現家	早期	中期	後期	Sok
8.Iodir	ne chemistry				
2801	Generation of acidic substances by radiolysis			High	Р
2802	Hydrolysis			High	Р
2803	Re-volatilization of iodine by acidification			High	Р
	pH decrease				
2804	Iodine chemical reaction in water pool			High	Р
2805	Decomposition reaction of iodine in the			High	Р
	atmosphere				
2806	Transfer between gas phase and water pool			High	Р
2807	Recombination reaction of iodine in the			High	Р
	atmosphere				
2808	Wall deposition of iodine in the atmosphere			High	Р
2809	Wall adsorption and desorption of iodine by			High	Р
	chemical adsorption process				
2810	Effect of impurities in the water pool			High	Р
2811	Iodine chemistry under high water temperature			High	Р
	conditions				
2812	Effects of seawater			High	U
2813	Iodine release from R/B contaminated water		High	High	U
9. Chemi	ical form (Iodine, Cesium)				
2901	Re-evaporation of I2 by the decomposition of			High	K
	CsI				
2902	Effects of seawater			High	U
2903	A generation ratio for the inorganic iodine of			High	Р
	the organic iodine				

				1st	2nd phase	3rd phase	4th phase	5th phase	1
				Fuel Fuel	Fuel Melting	Relocation from the	PCV	Hydrogen Leak	
	RPV or PCV	Subsyst em/ Compo nent	Phenomenon (Ranking scale: Importance: High, Medium, Low, N/A Sok(state of knowledge): Known, Partially known, Unknown	FoM: Fuel Rod Enthalpy	FoM: Enthalpy or Average Temperature for Core Region	Core FoM: Maximum Temperature in RPV wall or Corium Maximum Temperature	FoM: Maximum Pressure and Temperatu re in PCV	FoM: FoM: Concentration of Hydrogen, Oxygen and Steam	SoK
1	RPV	Core	Core Water Level Change	н	н	М	м	М	к
2			Core Flowrate Change	н	н	м	м	L	к
3			Core Coolant Temperature Change	н	L	L	L	L	к
4			Core Pressure Change	н	н	н	н	М	к
5			Boiling due to Depressurization	н	L	L	L	L	к
6			Gap Conductance between Fuel Pellets and Cladding	н	L	L	L	L	к
7			Gas (Condensable/Incondensable) Temperature Change in	м	L	L	м	М	к
8			Temperature Change in Fuel Cladding	н	н	L	L	М	к
9			Temperature Change in Fuel Pellets	н	н	L	L	М	к
10			Temperature Change in Control Rods	L	м	L	L		Р
11			Decay Heat in Intact Fuel Assemblies	н	М	L	L	L	к
12			Gamma Ray Heat Generation in Core Internals (Except Fuel	L	L	L	L	L	к
13			Temperature Change in Gaps between Fuel Pellets and	м	L	L	L	м	к
14			Temperature Change in Channel Boxes	м	н	L	L	м	Р
15			Temperature Change in Tie Plates	L	L	L	L	L	к
16			Temperature Change in Spacers	L	L	L	L	L	к
17			Heat Transfer between Water and Fuel Cladding	н	н	L	L	L	к
18			Heat Transfer between Water and Channel Boxes	м	м	L	L	L	к
19			Heat Transfer between Water and Control Rods	L	м	L	L		к
20			Heat Transfer between Water and Tie Plates	L	L	L	L	L	к
21			Heat Transfer between Water and Spacers	м	L	L	L	L	к
22			Heat Transfer between Fuel Cladding and Spacers	L	L	L	L	L	к
23			Heat Transfer between Fuel Cladding and Gas	н	н	L	L	м	к
24			Heat Transfer between Fuel Pellets and Gas	м	L	L	L	L	к
25			Heat Transfer between Channel Boxes and Gas	L	L	L	L	м	к
26			Heat Transfer between Control Rods and Gas	L	м	L	L		к
27			Heat Transfer between Tie Plates and Gas	L	L	L	L	L	к
28			Heat Transfer between Spacers and Gas	L	L	L	L	L	к
29			Hydrogen Absorption in Fuel Cladding	м	м	L	L	М	к
30			Fuel Pellets Composition (Including MOX Fuels and	м	м	L	L	м	к
31			Fuel Rod Growth (Cladding Irradiation Growth)	м	L	L	L	L	к
32			Pressure Change in Gap between Fuel Pellets and Cladding	м	м	L	L	L	к
33			Gas Composition Change in Gap between Fuel Pellets and	м	L	L	L	L	к
34			Balooning of Fuel Cladding	м	L	L	L	L	Р
35			Contraction of Fuel Cladding Outer Diameter(Creep Down)	м	м	L	L	L	к
36			Fuel Cladding Rupture	L	L	L	L	L	к
37			Changes in Bonding Status of Fuel Pellts to Cladding			L	L		P
38			Pellet Cracks, Grains and Relocation in Cladding	м	L	L	L	L	Р
39			Water Flow into Gap between Fuel Pellets and Cladding	N/A	N/A	N/A	L	M	Р
40			Steam Flow into Gap between Fuel Pellets and Cladding	м	м			м	Р
41			Zr-Water Reaction Facilitation by Water Flow into Gap	N/A	N/A	 N/A		н	P
42			Detween Fuel Pellets and Cladding Core Axial Power Distribution Change	н	н	1	-	м	ĸ
43			Core Radial Power Distribution Change	н	н	L	L	M	ĸ
44			Fuel Axial Exposure(Burn-up) Distribution	м	н	-	-	м	ĸ
						-	-		

表 2-5 熱水力 PIRT

45	Fuel Radial Exposure(Burn-up) Distribution	м	н	L	L	М	к
46	Pressure Loss Change for Core Flow Paths	М	м	L	L	L	к
47	Changes in Flowrate Distribution between Fuel Channels and Bynasses	М	М	L	L	L	к
48	Changes in Flowrate Distribution in each Fuel Channel	М	м	L	L	L	к
49	Changes in Pressure Loss at Core Inlet	М	L	L	L	L	к
50	Pressure Loss Increase by Fuel Cladding Swelling	М	L	L	L	L	к
51	Change in 2-Phase Flow Regime Status in Fuel Channels	М	М	L	L	L	к
52	Change in 2-Phase Flow Regime Status in Bypass Regions	М	L	L	L	L	к
53	Gas Natural Circulation above Water Level	н	н	н	L	М	к
54	CCFL at Upper Tie Plate	м	м	L	L	L	к
55	CCFL at Bypass Region	м	м	L	L	L	к
56	CCFL at Core Inlet	М	М	L	L	L	к
57	Changes in Gas Composition in Core Region	м	м	L	L	М	Р
58	Changes in Gas Spatial Distbution in Core Region	м	м	L	L	М	к
59	Changes in Gas Mixture Properties in Core Region	м	м	L	L	М	к
60	Changes in the Amount of Residual Burnable Poisons	L	L	L	L	L	к
61	Changes in Properties of Fuel Materials	м	м	L	L	L	к
62	Changes in Properties of Core Internals	L	м	М	L	L	к
63	Zr-Water Reaction Including Oxidation and Hydrogen	н	н	M		н	P
64	Production SUS-Water Reaction Including Oxidation and Hydrogen	м	м			н	к
65	Production Reaction between Water and Other Substances (e.g. B4C),	M	M	-	-	м	
66	Including Oxidation and Hydrogen Production	IVI	W L	L U	M	IVI	
00	Heat Transfer between Water(Liquid Priase) and Conum	N/A			M	L	P
67	Heat Transfer between Gaseous Phase and Conum	N/A			-	L	P
00	Heat Transfer between Fuer Cladding and Conum	IN/A			L	L	P
59	Heat Transfer between control rods and Corium	N/A	н	н	L .	L .	P
70	Heat Transfer between Channel Boxes and Corium	N/A	н	н	L .	L .	P
/1	Heat Transfer between Core Shroud and Corium Heat Transfer between Water Rods (or Channels) and	N/A	н	н	L	L .	P
72	Corium Heat Transfer between Water(Liquid Phase) and Particulate	N/A	M	M	L	L .	P
73	Corium	N/A	н	н	М	L	Р
74	Corium Heat Transfer between Eucl Cladding and Particulate	N/A	н	н	н	L	Р
75	Corium	N/A	М	М	L	L	Р
76	Heat Transfer between control rods and Particulate Corium	N/A	М	М	L	L	P
77	Corium	N/A	М	М	L	L	P
78	Heat Transfer between Core Shroud and Particulate Corium	N/A	L	М	L	L	Р
79	Particulate Corium	N/A	L	L	L	L	Р
80	Heat Transfer between Water(Liquid Phase) and Crust	N/A	н	н	М	L	Р
81	Heat Transfer between Gaseous Phase and Crust	N/A	н	н	н	L	Р
82	Heat Transfer between Fuel Cladding and Crust	N/A	М	н	L	L	Р
83	Heat Transfer between control rods and Crust	N/A	М	н	L	L	Р
84	Heat Transfer between Channel Boxes and Crust	N/A	М	н	L	L	Р
85	Heat Transfer between Core Shroud and Crust	N/A	М	н	L	L	Р
86	Heat Transfer between Water Rods (or Water Channels) and Crust	N/A	М	М	L	L	Р
87	Heat Transfer between Crusts and Corium	N/A	н	н	L	L	Р
88	Heat Transfer between Core Support Plate and Corium	N/A	н	н	L	L	Р
89	Heat Transfer between Core Support Plate and Crusts	N/A	н	н	L	L	Р
90	Heat Transfer between Core Fuel Support Coupling and Corium	N/A	н	н	L	L	Р
91	Radiation Heat Transfer among Fuel Rods	н	н	L	L	L	к
92	Radiation Heat Transfer between Channel Boxes and Fuel Rods	L	М	L	L	L	к
93	Radiation Heat Transfer between Water Rods (or Water Channels) and Fuel Rods	L	М	L	L	L	к
94	Radiation Heat Transfer among Channel Boxes	М	М	L	L	L	к
95	Radiation Heat Transfer between Channel Boxes and Core Shroud	М	М	L	L	L	к
96	Radiation Heat Transfer between control rods and Core Shroud	L	М	L	L	L	к
97	Radiation Heat Transfer between control rods and Channel Boxes	L	М	L	L	L	к
	 -						

98	Radiation Heat Transfer between Corium and Shroud	N/A	н	н	L	L	Р
99	Radiation Heat Transfer between Crusts and Shroud	N/A	М	М	L	L	Р
100	Radiation Heat Transfer between Particulate Corium and Shroud	N/A	М	М	L	L	Р
101	Radiation Heat Transfer between Corium and Core Support Plate	N/A	н	н	L	L	Р
102	Radiation Heat Transfer between Crusts and Core Support Plate	N/A	М	М	L	L	Р
103	Radiation Heat Transfer between Particulate Corium and Core Support Plate	N/A	L	L	L	L	Р
104	Fuel Pellet Expansion (Thermal Expansion, Gas Swelling, Solid Swelling)	м	М	L	L	L	к
105	FP Absorption into Fuel Pellet	L	L	L	L	L	Р
106	FP Release from Pellet to Gap between Fuel Pellets and	М	М	L	L	М	Р
107	FP Release from Damaged Fuel Rods to Channel Region	М	М	L	L	М	Р
108	Melting of Fuel Cladding	N/A	н	М	L	L	к
109	Melting of Fuel Pellet	N/A	н	М	L	L	к
110	Melting of control rod	N/A	н	М	L	L	Р
111	Melting of Channel Box	N/A	н	М	L	L	Р
112	Melting of Spacers	N/A	м	L	L	L	Р
113	Melting of Tie Plates	N/A	М	L	L	L	Р
114	Phase changing condition change for core materials (including eutectic)	N/A	н	н	М		Р
115	Fuel Rod Collapse and Moving to the Lower Region	N/A	н	н	L	L	Р
116	Channel Blockage by Collapsed Fuel Rods	N/A	н	м	L	L	Р
117	Melted Fuel 'Candling'	N/A	н	М	L	L	Р
118	Channel and Bypass Blockage by Melted Fuel	N/A	н	М	L	L	Р
119	Corium Temperature Change	N/A	н	н	L	L	Р
120	Formation of Molten Pool	N/A	н	н	L	L	Р
121	Natural Circulation in Molten Pool	N/A	н	н	L	L	Р
122	Molten Core Flow out of Crust Crack	N/A	н	н	L	L	Р
123	Corium Transverse Flow above Blocked Flowpaths	N/A	н	н	L	L	Р
124	Corium Spatial Distribution	N/A	L	н	L	L	Р
125	Vaporization inside Corium (including FP release)	N/A	М	М	L	L	Р
126	Decay Heat Generation from Corium	N/A	н	н	L	L	к
127	Corium-Water Reaction (Including Oxidation and Hydrogen Production)	N/A	L	н	L	М	U
128	Changes in Corium Properties by Mixed Composition	N/A	н	н	L	L	Ρ
129	Crust generation by solidification of corium	N/A	н	н	L	L	Ρ
130	Corium relolcation type through breached core support plate	N/A	N/A	н	М	М	Р
131	Change in Ablated Area for Core Support Plate	N/A	N/A	н	L	L	Р
132	Changes in Particle Corium (Debris) Composition	N/A	L	L	L	L	Р
133	Changes in Particle Corium Shape and Size	N/A	L	L	L	L	Р
134	Particulate Corium (Debris) Relocation	N/A	L	М	L	L	Р
135	Particle Corium Uneven Distribution	N/A	L	L	L	L	Р
136	Crust Formation on Fuel Cladding	N/A	М	М	L	М	Р
137	Void Generation inside Crust	N/A	М	М	L	L	Р
138	Water Flow around Crust	N/A	М	М	L	L	Р
139	Gaseous Flow around Crust	N/A	М	М	L	L	Р
140	Formation of Crust Crack	N/A	М	М	L	L	Р
141	Crust Temperature Change	N/A	М	М	L	L	Р
142	Changes in Crust Properties by Mixed Composition	N/A	М	М	L	L	Р
143	Crust-water Reaction (Including Oxidation and Hydrogen Production)	N/A	М	М	L	М	U
144	Water Flow into Crust	N/A	М	М	L	М	Р
145	Crust remelting due to change in the heat transfer status to corium or water	N/A	н	н	L	L	Ρ
146	Particulate corium remelting due to change in the heat transfer status	N/A	н	н	L	L	Ρ
147	Decay Heat Generation from Crust	N/A	М	н	L	L	Р
148	Molten Core Re-Criticality	N/A	н	н	L	L	Р
149	Molten Core Reflooding by Injection Restart	N/A	н	М	М	L	К

150		FP deposition on core internals	L	L	м	L	М	Р
151		FP re-vaporization	L	L	М	L	М	Р
152		Decay heat generation from FP	L	L	м	L	М	Р
153		FP reaction including iodine chemistry	L	L	L	L	L	Р
154		Adsorption and release of gaseous FP	L	L	L	L	L	Р
155		Corium Jet through Breached Core Support Plate	N/A	N/A	н	М	М	Р
156		Corium Flow into control rod guide tubes through Breached	N/A	N/A	н	L	L	Р
157		Corium Flow to the Downcomer through Breached Core	N/A	N/A	н	L	L	Р
158		Corium Flow out of the Core Inlet Orifice	N/A	N/A	н	L	L	Р
159		Corium Solidifcation inside Fuel Support Coupling	N/A	N/A	н	L	L	Р
160		Instrumentation Tube Break	N/A	М	н	м	м	Р
161		Corium Flow into Instrumentation Tube	N/A	М	н	L	м	Р
162		Water Flow into Instrumentation Tube	N/A	М	м	L	м	Р
163		Corium Solidifcation inside Instrumentation Tube	N/A	М	м	н	м	Р
164		Gas Leak Flow into Instrumentation Tube	N/A	М	м	L	н	Р
165		Water Radiolysis	L	L	L	L	L	к
166		Seasalt intake to corium	N/A	М	м	М	м	U
167		Seasalt impact for corium thermodynamic properties	N/A	М	м	L	L	U
168		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
169		Corrosion of Core Internals by Seasalt (including Marine	L	L	L	L	L	U
170		Lives)	м	М	м	L	L	U
171		Channel (Bypass) Flowpath Blockage by Seasalt Deposition	L	М	L	L	L	U
172		Seasalt Dissolution by Reflooding	L	М	L	L	L	P
173		Influence on Heat Transfer by Seasalt Concentration	L	L	L	L	L	Р
174		Influence on Instrumentation and Measurements by Seasalt	L	L	L	L	L	U
175		Concentration Change Corrosion of Core Internals by Boron	L	L	L	L		U
176		Impact of Boron Deposition on Heat Transfer	L	L	м	L	L	P
177		Channel (Bypass) Flowpath Blockage by Boron Deposition	L	м	L	L	L	Р
178		Boron Dissolution by Reflooding	L	L	L	L	L	Р
179	Shroud	Radiation Heat Transfer between Intact Fuel Rods and	м	L	L	L	L	к
180	nead	Shroud Head Radiation Heat Transfer between Corium and Shroud Head	N/A	L	L	L	м	к
181		Radiation Heat Transfer between Crust and Shroud Head	N/A	L	L	L	L	к
182		Radiation Heat Transfer between Shroud Sidewall and	L	L	L	L	L	к
183		Radiation Heat Transfer between Particulate Corium and	N/A	L	L	L	L	Р
184		Shroud Head Heat Transfer between Gas and Shroud Head	L	L	L	М	м	к
185		Shroud Head Break or Deformation by Thermal Stress	L	L	L	L	L	к
186		Shroud Head Oxidation with Steam (Including Reaction	L	L	L	L	м	к
187		Heat and Hydrogen Production) Gamma Ray Heat Generation in Shroud Head						к
188		Temperature Change in Shroud Head Structure						к
189		Droplet Sprav	N/A	L	L	L	L	к
190		Droplet Deposition on Shroud Head Structure	N/A	L	L	L		к
191		Condensation Heat Transfer on Shroud Head	L	L	L	L	L	к
192		Pressure Change in Shroud Head	L	М	м	L	м	к
193		Gas Flow in Shroud Head	L	L	L	L	L	к
194		Gas Composition Change in Shroud Head	L	L	L	м	м	к
195		Gas Temperature Change in Shroud Head	L	L	L	М	м	к
196		FP deposition on shroud head	L	L	L	L	L	Р
197		FP re-vaporization	L	L	L	L	L	Р
198		Decay heat generation from FP	L	L	L	L	L	к
199		FP Leakage from Flange between Shroud Sidewall and Head	L	L	L	L	L	Р
200		FP reaction including iodine chemistry	L	L	L	L	L	Р
201		Gas Leakage from Flange between Shroud Sidewall and Head	L	L	L	L	L	Р
202		Corrosion of Shroud Head by Seasalt (Including Marine Lives)	L	L	L	L	L	U

203		Influence for heat transfer by salt deposition	L	L	L	L	L	U
204		Spray Nozzle Blockage by Seasalt Deposition	L	L	L	L	L	Р
205		Re-solution of salt by reflooding	L	L	L	L	L	Р
206		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
207		Corrosion of Shroud Head by Boron	L	L	L	L	L	U
208		Influence for heat transfer by boron deposition	L	L	L	L	L	Р
209		Spray Nozzle Blockage by Boron Deposition	L	L	L	L	L	Р
210		Re-solution of boron by reflooding	L	L	L	L	L	Р
211	Standpi	Radiation Heat Transfer between Intact Fuel Rods and	L	L	L	L	L	к
212	Separat	Radiation Heat Transfer between Corium and	N/A	L	L	L	L	к
213	01	Radiation Heat Transfer between Crust and	N/A	L	L	L	L	к
214		Radiation Heat Transfer between Intact Control Rod and	L	L	L	L	L	к
215		Standpipe/Separator Radiation Heat Transfer between Shroud Structure and		1		1		к
216		Standpipe/Separator Radiation Heat Transfer between Particulate Corium and	N/A		-	-	-	P
210		Standpipe(Separator)	1	-	-	M	M	K
217		Standhine/Separater Temperature Change	-	-	-	IVI	NI LI	ĸ
210		Comma Heat Constation in Standpine/Constator	-		-	L .		ĸ
213		Condensation Heat Transfer on Standaire/Separator	-					ĸ
220						L 	L M	ĸ
221				IVI	IVI	IVI	IVI	ĸ
222		Cas Flow in Standpine/Separator	-		-			ĸ
223		Cas Composition Change in Standpine/Separator	-	-	-	-	ь ц	ĸ
224		Standpipe/Separator Break or Deformation by Themal	-	-	-	-		ĸ
225		Stress Standpipe/Separator Oxidation with Steam (Including	-		-	L M	ь Ц	ĸ
220		Reaction Heat and Hydrogen Production)		M		IVI		R R
227			L .	M	M			P
228		PP re-vaporization	L	M	M	н	н	P
229		Decay heat generation from FP	L	M .	M .	н	н	ĸ
230		FP reaction including loaine chemistry Corrosion of Standpipe/Separator by Seasalt (Including	L .	L .	L .	L	L .	Р
231		Marine Lives)	L .	L	L	L	L	0
232		Influence for heat transfer by salt deposition	L	L	L	L	L	P
233		Pick-off Ring Flowpath Blockage by Seasalt Deposition	L	L	L	L	L	Р
234		Separator Inlet Flowpath Blockage by Seasalt Deposition	L	L	L	L	L	Р
235		Re-solution of salt by reflooding	L	L	L	L	L	Р
236		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
237		Corrosion of Standpipe/Separator by Boron	L	L	L	L	L	U
238		Influence for heat transfer by boron deposition	L	L	L	L	L	Р
239		Pick-off Ring Flowpath Blockage by Boron Deposition	L	L	L	L	L	Р
240		Separator Inlet Flowpath Blockage by Boron Deposition	L	L	L	L	L	Р
241		Re-solution of boron by reflooding	L	L	L	L	L	Р
242	Druge	Standpipe/Separator Tilt by Shroud Head Deformation	L	L	L	L	L	Р
243	Dryer	Dryer Temperature Change	L	L	L	L	н	к
244		Gamma Heat Generation in Dryer	L	L	L	L	L	К
245		Heat Transfer between Gas and Dryer	L	L	L	L	М	К
246		Condensation Heat Transfer on Dryer	L	L	L	L	L	к
247		Pressure Change in Dryer	L	М	М	М	М	К
248		Gas Flow in Dryer	L	L	L	L	L	к
249		Gas Temperature Change in Dryer	L	L	L	н	М	к
250		Gas Composition Change in Dryer	L	L	L	L	н	к
251		Dryer Break or Deformation by Thermal Stress	L	L	L	L	L	к
252		Dryer Oxidation with steam (Including Reaction Heat and Hydrogen Production)	L	L	L	L	н	к
253		FP deposition on dryer	L	М	М	н	н	Р
254		FP re-vaporization	L	М	М	н	н	Ρ

	 -		-					
255		Decay heat generation from FP	L	М	М	н	н	к
256		FP reaction including iodine chemistry	L	L	L	L	L	Р
257		Corrosion of Dryer by Seasalt (Including Marine Lives)	L	L	L	L	L	U
258		Influence for heat transfer by salt deposition	L	L	L	L	L	U
259		Dryer Flowpath Blockage by Seasalt Deposition	L	L	L	L	L	U
260		Re-solution of salt by reflooding	L	L	L	L	L	U
261		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
262		Corrosion of Dryer by Boron	L	L	L	L	L	U
263		Impact of Boron Deposition on Heat Transfer	L	L	L	L	L	U
264		Dryer Flowpath Blockage by Boron Deposition	L	L	L	L	L	U
265		Re-solution of boron by reflooding	L	L	L	L	L	Р
266		Dryer Structure Tilt	L	L	L	L	L	Р
267	Upper	Heat Transfer between Gas and Upper Head Wall	L	L	L	н	М	к
268	Tieau	Gamma Heat Generation in Upper Head	L	L	L	L	L	к
269		Upper Head Temperature Change	L	L	L	м	М	к
270		Radiation Heat Transfer from Upper Head to Drywell Head	м	М	М	н	L	к
271		Condensation Heat Transfer on Upper Head	L	L	L	L	L	к
272		Pressure Change in Steam Dome	L	M	M	н	н	к
273		Gas Elow in Steam Dome				1	1	к
274		Gas Temperature Change in Steam Dome				-	м	ĸ
275		Cas Composition Change in Steam Dome					н	ĸ
276		Upper Head Oxidation with Steam (Including Reactin Heat					м	ĸ
270		and Hydrogen Production)		L M	L 	L M	IVI	
277				M	M	IVI M	IVI	
278		PP re-vaporization	L .	M	M	IVI	IVI	P
279		Decay heat generation from FP	L	M .		M .		ĸ
280		PP reaction including lodine chemistry		L	L	L	L	P
281		Gas Leakage from RPV flange to Drywell Head Corrosion of Upper Head by Seasalt (Including Marine	L .	н	н	M .	. н	Р
282		Lives)	L	L	L	L	L	U
283		Influence for heat transfer by salt deposition	L	L	L	L	L	U
284		Re-solution of salt by droplet	L	L	L	L	L	Р
285		Concentration Change	L	L	L	L	L	U
286		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
287		Corrosion of Upper Head by Boron	L	L	L	L	L	Р
288		Influence for heat transfer by boron deposition	L	L	L	L	L	U
289		Re-solution of boron by reflooding	L	L	L	L	L	Р
290	Main	Degradation or Falling of Lagging Material	М	М	М	М	L	Р
291	Steam	Main Steam Line Creep Rupture	N/A	М	М	L	L	К
292	Line	Break Flow from Main Steam Line Break	N/A	М	М	L	L	к
293		Gas Flow in Main Steam Line	L	L	L	L	L	К
294		Pressure Change in Main Steam Line	L	М	М	н	н	к
295		Gas Temperature Change in Main Steam Line	L	М	М	н	М	К
296		Gas Composition Change in Main Steam Line	L	L	L	L	н	К
297		Main Steam Line Temperature Change	L	М	М	L	L	К
298		Heat Transfer between Gas and Main Steam Line	L	L	L	М	L	к
299		Heat Transfer between water and Main Steam Line	L	L	L	L	L	К
300		Condensation Heat Transfer on Main Steam Line	L	L	L	L	L	к
301		Heat Transfer to Drywell through Lagging Material	L	L	L	L	L	к
302		Safety Relief Valve Opening Characteristics	М	н	н	L	н	к
303		Leakage from Safety Relief Valve to Drywell	М	н	н	L	н	к
304		Pressure Loss at Safety Relief Valve	М	н	н	L	М	к
305		Safety Relief Valve Temperature Change	L	L	L	L	L	к
306		Heat Transfer between Gas and Safety Relief Valve Blowdown Piping	L	L	L	L	L	к
307		Safety Relief Valve Blowdown Piping Break	L	L	L	L	L	к

308	1		Safety Relief Valve Blowdown Piping Break Flow	L	L	L	L	L	к
309			MSIV Closure	М	М	М	М	М	к
310			Pressure Wave by MSIV Closure	L	N/A	N/A	N/A	N/A	к
311			Gas Leakage from MSIV	м	М	м	м	М	к
312			FP deposition on main steam line	L	L	L	М	М	к
313			FP re-vaporization	L	L	L	М	М	к
314			Decay heat generation from FP	м	н	н	М	М	к
315			EP accumulation at leakage path	м	н	н	н	н	U
316			Radiation heat transfer to drawell						ĸ
317			Influence on Heat Transfer by Seasalt Concentration						P
240			Change Influence on Instrumentation and Measurements by Seasalt				L.		,
318			Concentration Change		L .	L .	L .	L .	0
319			Seasalt impact for FP reaction and composition	L .	L .	L	L .	L .	Р
320			FP reaction including iodine chemistry	L	L	L	L	L	Р
321			Failure of RPV nozzle welding by thermal stress	N/A	М	М	М	L	P
322	Ļ		Degradation or Falling of Lagging Material	L	L	L	L	L	Р
323		down	Heat Transfer between Gas and Upper Downcomer Wall	L	L	L	М	М	к
324		comer	Gamma Heat Generation in Upper Downcomer Wall	L	L	L	L	L	к
325			Upper Downcomer Wall (and Feedwater Sparger) Temperature Change	L	L	L	L	М	к
326			Condensation Heat Transfer on Upper Downcomer Wall (and Feedwater Sparger)	L	L	L	L	L	к
327			Pressure Change in Upper Downcomer	L	М	М	н	М	к
328			Change in water level in upper down comer	н	L	L	L	L	к
329			Gas Flow in Upper Downcomer	L	L	L	L	L	к
330			Gas Temperature Change in Upper Downcomer	L	L	L	н	М	к
331			Gas Composition Change in Upper Downcomer	L	L	L	L	н	к
332			Upper Downcomer Wall (and Feedwater Sparger) Break or Deformation by Thermal Stress	L	L	L	L	L	к
333			Upper Downcomer Wall (and Feedwater Sparger) Oxidation with Steam (Including Reaction Heat and Hydrogen Production)	L	L	L	L	М	к
334			FP deposition on upper down comer	L	L	L	м	М	Р
335			FP re-vaporization	L	L	L	м	М	Р
336			Decay heat generation from FP	L	L	L	М	м	к
337			EP reaction including jodine chemistry	L	L	L	L	L	Р
338			Radiation heat transfer to drawell	м	M	M	M		
339			Corrosion of Upper Head by Seasalt (Including Marine	1			1		
340			Lives)	-	-	-	-	-	
340									U V
341			Influence on Instrumentation and Measurements by Seasalt						
342			Concentration Change		L .	L .	L .	L	0
343			Corrosion of Upper Head by Boron	L	L	L	L	L	0
344			Influence for heat transfer by boron deposition	L	L	L	L	L	U
345			Re-solution of boron by reflooding	L	L	L	L	L	К
346			Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
347			Gas Flow to Main Steam Line	L	L	L	М	М	к
348			FP Flow to Main Steam Line	L	L	L	М	М	к
349			Gas Flow to Feedwater Line	L	L	L	М	М	к
350			FP Flow to Feedwater Line	L	L	L	М	Μ	К
351			Heat Transfer to Drywell through Lagging Material	М	М	М	М	L	к
352			Failure of RPV nozzle welding by thermal stress	N/A	М	М	М	L	Р
353			Degradation or Falling of Lagging Material	М	М	М	М	L	Р
354	Γ	Lower D/C	Heat transfer between water and shroud wall	L	н	н	L	L	к
355			Heat transfer between water and jet pump	L	L	L	L	L	к
356			Heat transfer between water and pump deck	L	L	L	L	L	к
357			Heat transfer between water and RPV wall	L	L	М	L	L	к
358			Heat transfer between gas and shroud wall	L	L	L	М	L	к
359			Heat transfer between gas and jet pump	L	L	L	L	L	к

360	Heat transfer between gas and pump deck	L	L	L	L	L	к
361	Heat transfer between gas and RPV wall	L	L	L	М	L	к
362	Heat transfer between water and corium	N/A	N/A	н	L	L	Р
363	Heat transfer between gas and corium	N/A	N/A	М	М	L	Р
364	Heat transfer between corium and shroud wall	N/A	N/A	н	L	L	Р
365	Heat transfer between corium and jet pump	N/A	N/A	М	L	L	Р
366	Heat transfer between corium and pump deck	N/A	N/A	М	L	L	Р
367	Heat transfer between corium and RPV wall	N/A	N/A	н	L	L	Р
368	Heat transfer between water and crust	N/A	N/A	М	L	L	Р
369	Heat transfer between gas and crust	N/A	N/A	М	L	L	Р
370	Heat transfer between corium and crust	N/A	N/A	н	L	L	Р
371	Heat transfer between crust and shroud wall	N/A	N/A	н	L	L	Р
372	Heat transfer between crust and jet pump	N/A	N/A	М	L	L	Р
373	Heat transfer between crust and pump deck	N/A	N/A	М	L	L	Р
374	Heat transfer between crust and RPV wall	N/A	N/A	н	L	L	Р
375	Heat transfer between water and particulate corium	N/A	N/A	н	L	L	Р
376	Heat transfer between gas and particulate corium	N/A	N/A	н	М	L	Р
377	Heat transfer between particulate corium and shroud wall	N/A	N/A	н	L	L	Р
378	Heat transfer between particulate corium and jet pump	N/A	N/A	м	L	L	Р
379	Heat transfer between particulate corium and pump deck	N/A	N/A	м	L	L	Р
380	Heat transfer between particulate corium and RPV wall	N/A	N/A	н	L	L	Р
381	Heat Transfer to Drywell through Lagging Material	М	М	м	М	L	к
382	Radiation heat transfer between corium and shroud wall	N/A	N/A	м	L	L	Р
383	Radiation heat transfer between corium and jet pump	N/A	N/A	М	L	L	Р
384	Radiation heat transfer between corium and pump deck	N/A	N/A	М	L	L	Р
385	Radiation heat transfer between corium and RPV wall	N/A	N/A	М	L	L	Р
386	Radiation heat transfer between particulate corium and	N/A	N/A	М	L	L	Р
387	Radiation heat transfer between particulate corium and jet	N/A	N/A	м	L	L	Р
388	Radiation heat transfer between particulate corium and	N/A	N/A	м	L	L	Р
389	Radiation heat transfer between particulate corium and RPV	N/A	N/A	м	L	L	Р
390	Radiation heat transfer between crust and shroud wall	N/A	N/A	м	L	L	Р
391	Radiation heat transfer between crust and jet pump	N/A	N/A	L	L	L	Р
392	Radiation heat transfer between crust and pump deck	N/A	N/A	м	L	L	Р
393	Radiation heat transfer between crust and RPV wall	N/A	N/A	М	L	L	Р
394	Radiation heat transfer to drywell	м	м	м	м	L	к
395	Heat generation by gamma ray in Lower D/C structure	L	L	м	L	L	к
396	Failure of shroud wall by thermal stress	L	L	м	L	L	Р
397	Failure of RPV nozzle welding by thermal stress	N/A	N/A	м	М	L	Р
398	CCFL in suction part in jet pump	L	L	L	L	L	к
399	Change in water level in Lower D/C	н	н	М	L	L	к
400	Change in pressure in Lower D/C	L	м	м	М	L	к
401	Change of flow regime in Lower D/C	L	L	L	L	L	к
402	Decompression boiling	н	L	м	L	L	к
403	Change in water temperature in Lower D/C	м	L	м	L	L	к
404	Change in gas temperature in lower down comer	L	L	М	L	L	к
405	Change in gas composition in Lower D/C	L	L	L	L	н	к
406	Change in temperature in shroud wall	м	м	н	L	L	к
407	Change in temperature in jet pumps	L	L	н	L	L	к
408	Change in temperature in pump deck	L	L	н	L	L	к
409	Change in temperature in RPV sidewall	м	м	н	М	L	к
410	Corium relocation type through breached core shroud to	N/A	N/A	н	М	М	Р
411	Corium spreading in Lower D/C	N/A	N/A	н	L	L	U
412	Ablation of outer wall surface of shroud by corium	N/A	N/A	н	L	L	Р
L							

	-		-					
413		Change in area of failire opening in shroud	N/A	N/A	н	М	L	к
414		Flow of water and gas through failure opening in shroud	N/A	N/A	М	М	L	к
415		Corium submerged in water by water injection	N/A	N/A	н	L	L	к
416		FCI pre-mixing by contact between corium and water pool	N/A	N/A	н	М	L	Ρ
417		FCI triggering by vapor film collapse	N/A	N/A	н	М	М	Ρ
418		Atomization of corium in water pool and rapid steam generation (FCI)	N/A	N/A	н	М	М	Р
419		Pressure wave by FCI	N/A	N/A	н	М	L	Р
420		Temperature increas of water and gas by FCI	N/A	N/A	н	М	L	Р
421		Failure of RPV lower head by FCI	N/A	N/A	н	М	L	Р
422		Scattering of corium, particulate corium and crust in Lower	N/A	N/A	н	М	L	Р
423		Impact for FCI by seawater	N/A	N/A	L	L	L	U
424		Change in corium temperature	N/A	N/A	н	L	L	Р
425		Blockage of failure opening in Lower D/C by freezing of	N/A	N/A	н	L	L	U
426		Change in physical property by material mixing in corium	N/A	N/A	н	L	L	Р
427		Oxidation reaction between corium and water (steam)	N/A	N/A	м	L	м	U
428		(including hydrogen generation and reaction heat) Oxidation reaction between shroud and steam (including		M	м	-	M	P
429		hydrogen generation and reaction heat) Oxidation reaction between jetpump and steam (including	-			-		P
420		hydrogen generation and reaction heat) Oxidation reaction between pump deck and steam	-	-	-	-	-	
430		(including hydrogen generation and reaction heat) Oxidation reaction between RPV sidewall and steam					L M	
431		(including hydrogen generation and reaction heat)	L	L	L	L .		P
432		Crust generation by solidification of corium Crust remelting due to change in the heat transfer status to	N/A	N/A	н	L	L	P
433		corium or water	N/A	N/A	М	L	L	Р
434		transfer status	N/A	N/A	М	L	L	Р
435		Corium spreading in circumferential direction in Lower D/C	N/A	N/A	М	L	L	Р
436		Decay heat in corium	N/A	N/A	н	L	L	Р
437		Relocation of corium by failure of pump deck	N/A	N/A	М	L	L	Р
438		Relocation of corium by failure of jet pump	N/A	N/A	М	L	L	Р
439		Particulation of corium by contact with water	N/A	N/A	н	L	L	Р
440		Change in physical property of particulate corium	N/A	N/A	н	L	L	Р
441		Change in size and shape of particulate corium	N/A	N/A	М	L	L	Ρ
442		Entrainmentof of particulate corium from corium falling into water	N/A	N/A	н	L	L	Р
443		Aggregation and bed formation of particulate corium	N/A	N/A	н	L	L	Ρ
444		Change in temperature of particulate corium	N/A	N/A	н	L	L	Р
445		Decay heat in particulate corium	N/A	N/A	н	L	L	Р
446		Change in temperature of crust	N/A	N/A	н	L	L	Ρ
447		Bubble formation in crust	N/A	N/A	м	L	L	Р
448		Water inflow into crust through crack on surface of crust	N/A	N/A	м	L	L	Р
449		Decay heat in crust	N/A	N/A	н	L	L	Р
450		Change in physical property by material mixing in crust	N/A	N/A	М	L	L	Р
451		Oxidation reaction between crust and water (steam)	N/A	N/A	М	L	L	U
452		Flow path blockage in Lower D/C (including jet pump) by	N/A	N/A	н	L	L	Р
453		Recriticality	N/A	N/A	м	L	L	Р
454		Flow of corium (including particulate corium) out of RPV	N/A	N/A	N/A	м	L	Р
455		Flow of corium (including particulate corium) into	N/A	N/A	м	L	L	Р
456		recirculation loop piping Radiation decomposition of water	L	L	L	L	L	к
457			_	-	-			P
459			-	-	-			P
459		Decay heat generation from EP			-	-	1	P
460		EP release from conjum surface	L N/A		L	L	L	
461			IN/A	IN/A	IVI	IVI	IVI	
462		Adsorption and release of geocoup ED		L .	L .	L .	L .	
402		Thermal failure of pump deck by radiation heat transfer from		L			L.	р И
403		lower head Corrosion of structure in Lower D/C by salt content of	N/A	N/A	н	L	M	ĸ
464		seawater (including marine lives)		L	L	L	L	U
465		Seasalt intake to corium	N/A	N/A	м	М	М	U

Main Note Note L	466		Influence for heat transfer by salt deposition	L	L	L	L	L	U
Main	467		Flow path blockage in jet pump by salt deposition	L	L	L	L	L	U
M M L	468		Re-solution of salt by reflooding	L	L	L	L	L	Р
00 1 <td< td=""><td>469</td><td></td><td>Influence on Heat Transfer by Seasalt Concentration Change</td><td>L</td><td>L</td><td>L</td><td>L</td><td>L</td><td>Р</td></td<>	469		Influence on Heat Transfer by Seasalt Concentration Change	L	L	L	L	L	Р
P1 Image: point of P machine and composition Image: point of P machine and P	470		Influence on Instrumentation and Measurements by Seasalt Concentration Change	L	L	L	L	L	U
141 Image: Answer of instance is lower DD by by some I. I. <t< td=""><td>471</td><td></td><td>Seasalt impact for FP reaction and composition</td><td>L</td><td>L</td><td>L</td><td>L</td><td>L</td><td>Р</td></t<>	471		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
M M L L L L L L M P P P P P M	472		Corrosion of structure in Lower D/C by boron	L	L	L	L	L	U
Process backage in grants by back dependence L <td>473</td> <td></td> <td>Influence for heat transfer by boron deposition</td> <td>L</td> <td>L</td> <td>L</td> <td>L</td> <td>L</td> <td>Р</td>	473		Influence for heat transfer by boron deposition	L	L	L	L	L	Р
M0 No L L L L L N M1 No M M M M M M N M1 No M M M M M M N N M1 Main section	474		Flow path blockage in jet pump by boron deposition	L	L	L	L	L	U
PM Degradation of sales of Lagging Material M M M M M M M M L P Total M Note that the theorem water and generation base (contex) L L L H M L K M Note that the theorem water and generation base (contex) No. L H M L L K M Note that theorem gas and generation base (contex) No. No. No. M </td <td>475</td> <td></td> <td>Re-solution of boron by reflooding</td> <td>L</td> <td>L</td> <td>L</td> <td>L</td> <td>L</td> <td>Р</td>	475		Re-solution of boron by reflooding	L	L	L	L	L	Р
Image Image <th< td=""><td>476</td><td></td><td>Degradation or Falling of Lagging Material</td><td>М</td><td>М</td><td>М</td><td>М</td><td>L</td><td>Р</td></th<>	476		Degradation or Falling of Lagging Material	М	М	М	М	L	Р
Hold Hold transfer between and perstantion takes (corrent on adjust) adva (and lines, and contrastal (tables) NiA L M M L K 100 Hold transfer between apara advocation takes (corrent on adjust) adva (table tables) NiA L HM L L K 100 Hold transfer between apara diversition tables (corrent on adjust babe, drain (incer, and instrumediator tables) NiA NiA HM M L F 100 Hold transfer between corrum and gase (transfer between corrum and gase (transfer between paraditato corrum and gase (transfer between paraditator corrum ad gase (transfer between corrum ad g	477	Lower	Heat transfer between water and lower head including crack	L	L	н	М	L	к
9/9 Heat stands between part of laws have including starks N/A L M L L K 480 Heat stands's between part of laws have including starks N/A N/A N/A M M L L L K 481 Heat stands's between corlum and water (including C/P) N/A N/A N/A M M M L P 483 Heat stands's between corlum and water (including C/P) N/A N/A N/A M M M L P 483 Heat stands's between corlum and water N/A N/A N/A M M L L P 484 Heat stands's between particulate corlum and gas N/A N/A N/A M L L L L P 484 Heat stands's between particulate corlum and gas N/A N/A M M L	478	noud	Heat transfer between water and penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes)	L	L	н	М	L	к
480 Head handler beloween as and pertention lakes (control med uside lakes, drain lines, and investigations (Line) NA L M L L 481 482 483 484 484 485 486 486 486 486 487 488 488 486 486 486 487 488 488 489 489 480 481 486 486 486 487 488 488 489 489 480 481 482 483 484 484 485 486 486 487 488 488 489 480 481 482 483 484 484 485 486 486 487 488 488 <	479		Heat transfer between gas and lower head including crack	N/A	L	н	L	L	к
481 Heat transfer between outure and value (including CPF) NA NA NA H M L P 482 Heat transfer between outure and gas NA NA NA H M L P 483 Heat transfer between outure and gas NA NA NA H M L L P 484 Heat transfer between outure and gas NA NA NA H M L L P 485 Heat transfer between outure and gas NA NA NA H M M U 486 Heat transfer between opticulatic colum and gas NA NA NA H L L U 487 Heat transfer between opticulatic colum and gas NA NA NA H L L U 488 Heat transfer between opticulatic colum and gas NA NA NA H L L P 489 Heat transfer between opticulatic colum and gas NA NA NA H L L P 481 Heat transfer between opticulatic colum and gas NA NA NA H L L L P 482	480		Heat transfer between gas and penetration tubes (control	N/A	L	м	L	L	к
482 Heat transfer between colum and gata NA NA NA MA	481		Heat transfer between corium and water (including CHF)	N/A	N/A	н	М	L	Р
483 Hot burder between orium and gave head NA NA HA M L P 484 Heat transfer between orium and lower head NA NA NA H M L P 486 Heat transfer between orium and lower head NA NA NA H M M L L P 486 Heat transfer between particulate contin and querit failow NA NA NA H M M U L U U 486 Heat transfer between particulate contin and querit failow NA NA NA H L L U U 486 Heat transfer between particulate contin and querit failow NA NA NA H L L U U 486 Heat transfer between contal and querit failow NA NA NA H L L U U 486 Heat transfer between contal and querit failow NA NA NA M L L L U 486 Heat transfer between contal and querit failow NA NA NA M L L L L U 486 Heat transfer between contal and particula	482		Heat transfer between corium and gas	N/A	N/A	н	М	М	Р
Heat Indiana I	483		Heat transfer between corium and penetration tubes (control	N/A	N/A	н	М	L	Р
Mathematical bases NA NA NA H L L L 485 Heat transfer bases particulate conium and gas NA NA NA H L L L U 486 Heat transfer bases particulate conium and gas NA NA NA H L L U U 486 Heat transfer bases particulate conium and gas NA NA NA H L L L U U 488 Heat transfer bases particulate conium and gas NA NA NA H L L L U <t< td=""><td>484</td><td></td><td>Heat transfer between corium and lower head</td><td>N/A</td><td>N/A</td><td>н</td><td>м</td><td></td><td>Р</td></t<>	484		Heat transfer between corium and lower head	N/A	N/A	н	м		Р
Heat transfer between particulate corum and gasNANANAHMMU487Heat transfer between particulate corum and penetration tissumetation todes (and in lines, and insumetation todes)NANANAHLLU488Heat transfer between particulate corum and light metal Heat transfer between corut and gasNANANAHLLLP401Heat transfer between corut and gasNANANAHMLPP402Heat transfer between corut and light metal light rod guide tables, dim lines, and rod guide table	485		Heat transfer between particulate corium and water	N/A	N/A	н	L		P
Mathematical and a structure of the structure of th	486		Heat transfer between particulate corium and das	N/A	N/A	н	M	M	U
Instrumetation tubes) Instrumetation tubes Instrumetation tubes Instrumetation tubes 489 Heat transfer between particulate corium and light metal NA NA NA H L L P 489 Heat transfer between cuts and water (including CHF, inner rand, and gp) NA NA NA H L L P 481 Heat transfer between cuts and gas NA NA NA M L L P 483 Heat transfer between cuts and gan genetation tubes (coriul ro guide tubes, can instrumetation tubes) NA NA NA M M L L P 484 Heat transfer between cuts and genetation tubes (coriul mark (including CHF) NA NA NA M L L P 485 Heat transfer between rust and lower head N/A NA NA M L L L P 486 Heat transfer between light metal layer and vater (including CHF) N/A N/A N/A L L L L P	487		Heat transfer between particulate corium and gue tubes (control rod ouide tubes, drain lines, and	N/A	N/A	н			U
Heat transfer between particultic corum and lower head NA NA NA H L L L U 489 Heat transfer between particultic corum and lower head NA NA NA H L L U 480 Heat transfer between cuts and water (including CHF, inner code and pp) NA NA NA H L L L P 481 Heat transfer between cuts and particulton tubes (cortical do guide tubes, drain lines, and instrumetation tubes) NA NA NA M M L L L P 483 Heat transfer between cuts and joner transfer between tubes (cortical do guide tubes, drain lines, and intermaterial between light metal layer and passe NA NA NA L L L P 488 Heat transfer between light metal layer and passe NA NA NA M L L L L P 489 Heat transfer between light metal layer and power light metal layer and power light metal la			instrumetation tubes)						
Image: Image:<	488		Heat transfer between particulate corium and lower head Heat transfer between particulate corium and light metal	N/A	N/A	н	L	L	P
480 Image: and gap: an observed and gas NA NA NA H L L P 491 Heat transfer between crust and gas NA NA NA MA L L P 492 Heat transfer between crust and generation tubes (control ord guide tubes, drain lines, and instrumetation tubes) NA NA HA M L P 493 Heat transfer between crust and lower head NA NA NA H M L P 494 Heat transfer between crust and lower head NA NA NA M L L P 495 Heat transfer between rust and lower head NA NA MA L L L P 496 Heat transfer between light metal layer and year of not transfer between rust and generation tubes; drain lines, and NA NA NA M L L L P 497 Heat transfer between night metal layer and year of not transfer between particulate cortum pool and rustrumetation tubes) NA NA NA M M L L L L P P P	489		layer Heat transfer between crust and water (including CHE inner	N/A	N/A	н	L	L	U
491 Heat transfer bowen outst and gas NA NA NA M L L P 492 Heat transfer bowen outst and gas NA NA NA H M L P 493 Heat transfer botwen outst and genetration tubes (control NA NA NA H M L P 493 Heat transfer botwen outst and igner trainstein tubes NA NA NA H M L P 494 Heat transfer botwen outst and igner nead water (including CHF) NA NA MA L L L P 496 Heat transfer botwen ignt metal layer and year an	490		crack and gap)	N/A	N/A	н	L	L	Р
482 Heat transfer between orium and orust N/A N/A H M L P 493 Heat transfer between orust and penetration tubes (control N/A N/A N/A H M L P 494 Heat transfer between orust and penetration tubes (control N/A N/A N/A H M L P 495 Heat transfer between orust and light metal layer and water (including or 10%) N/A N/A N/A M L L P 496 Heat transfer between light metal layer and penetration tubes, control may between light metal layer and penetration tubes, control may between light metal layer and penetration tubes, control may between light metal layer and penetration tubes, control may between light metal layer and penetration tubes, control may between light metal layer and lower head N/A N/A M L L L P 499 Heat transfer between light metal layer and lower head N/A N/A M M L L L P 600 Heat transfer between light metal layer in corium pool and penetration tubes, control may of and penetration tubes, control of and penetration tubes, control of and penet	491		Heat transfer between crust and gas	N/A	N/A	М	L	L	Р
433 Heat transfer between crust and penetration tubes) NA NA H M L P 434 Heat transfer between crust and lower head NA NA M M L P 436 Heat transfer between crust and lower head NA NA M L L P 436 Heat transfer between crust and light metal layer NA NA M L L P 437 Heat transfer between light metal layer and gas N/A N/A M L L P 438 Heat transfer between light metal layer and gas N/A N/A M L L P 439 Heat transfer between light metal layer and penetration tubes (control or quide tubes, drain lines, and instrumetation tubes) N/A N/A M L L L P 430 Heat transfer between heavy metal layer in contum pool and penetration tubes (control or quide tubes, drain lines, and instrumetation tubes) N/A N/A N/A L L L L L L M K K K K K K K K <	492		Heat transfer between corium and crust	N/A	N/A	н	М	L	Р
444 Heat transfer between crust and lower head NA NA H M L P 495 Heat transfer between light metal layer and water (including) NA NA NA M L L P 496 Heat transfer between light metal layer and water (including) NA NA NA L L L P 497 Heat transfer between light metal layer and gas NA NA NA L L L P 498 Heat transfer between light metal layer and gas NA NA M L L L P 499 Heat transfer between light metal layer and penetration layer (in cortum pool and instrumetation tabes) NA NA NA M L L L P 500 Heat transfer between heavy metal layer in cortum pool and instrumetation tabes) NA NA NA L L L L P 501 Heat transfer between heavy metal layer in cortum pool and instrumetation tabes) NA NA NA L L L L R 502 Heat transfer between heavy metal layer in cortum pool and instrumetation tabes NA NA NA L L L L L L	493		Heat transfer between crust and penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes)	N/A	N/A	н	М	L	Ρ
495 Heat transfer between light metal layer and water (including) N/A N/A M L L P 496 Heat transfer between light metal layer and water (including) N/A N/A N/A L L L P 497 Heat transfer between light metal layer and gas N/A N/A N/A L L L L P 498 Heat transfer between light metal layer and gas N/A N/A N/A L L L L P 498 Heat transfer between light metal layer and per heat N/A N/A N/A M L L L P 499 Heat transfer between light metal layer in corium pool and instrumetation tubes N/A N/A N/A L L L L P 501 Heat transfer between heary metal layer in corium pool and instrumetation tubes N/A N/A N/A L	494		Heat transfer between crust and lower head	N/A	N/A	н	М	L	Р
496 Heat transfer between light metal layer and gas N/A N/A M L L N 497 Heat transfer between light metal layer and gas N/A N/A N/A L </td <td>495</td> <td></td> <td>Heat transfer between crust and light metal layer</td> <td>N/A</td> <td>N/A</td> <td>М</td> <td>L</td> <td>L</td> <td>Р</td>	495		Heat transfer between crust and light metal layer	N/A	N/A	М	L	L	Р
497 Heat transfer between light metal layer and gas N/A N/A L L L P 488 Heat transfer between light metal layer and genetration ubes (ontrol rod guide tubes, drain lines, and linestrumetation tubes (control rod guide tubes, drain lin	496		Heat transfer between light metal layer and water (including CHF)	N/A	N/A	м	L	L	Р
488 Heat transfer between light metal layer and ponetration instrumetation tubes; drain lines, and instrumetation tubes; N/A N/A M L L P 499 Heat transfer between light metal layer and lower head N/A N/A M M L L P 500 Heat transfer between heavy metal layer in corium pool and lower head N/A N/A N/A L L L L P 501 Heat transfer between heavy metal layer in corium pool and penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes) N/A N/A N/A L L L L P 503 Radiation heat transfer between heavy metal layer in corium pool and metal-oxide layer in corium N/A N/A N/A M L <	497		Heat transfer between light metal layer and gas	N/A	N/A	L	L	L	Р
499 Heat transfer between light metal layer in corium pool and lower head N/A N/A M M L P 500 Heat transfer between heavy metal layer in corium pool and penetration tubes (control rod guide tubes, drain lines, and instrumentation tubes) N/A N/A L L L P 501 Heat transfer between heavy metal layer in corium pool and penetration tubes (control rod guide tubes, drain lines, and instrumentation tubes) N/A N/A L L L L P 502 Heat transfer between heavy metal layer in corium pool and penetration tubes (control rod guide tubes, drain lines, and instrumentation tubes) N/A N/A N/A L L L L P 503 Radiation heat transfer between particulate corium and core N/A N/A N/A M L M K 504 Radiation heat transfer between corium and lower head N/A N/A N/A M L M K 505 Particulate Corium Bed Porosity N/A N/A N/A M L L K 506 Change in temperature of penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes L	498		Heat transfer between light metal layer and penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes)	N/A	N/A	М	L	L	Ρ
500 Heat transfer between heavy metal layer in corium pool and perteration tubes (control rod guide tubes, drain lines, and instrumetation tubes) N/A N/A L L L P 501 Heat transfer between heavy metal layer in corium pool and perteration tubes (control rod guide tubes, drain lines, and instrumetation tubes) N/A N/A L L L L P 502 Heat transfer between heavy metal layer in corium pool and perteration tubes (control rod guide tubes, drain lines, and instrumetation tubes) N/A N/A N/A L L L L P 503 Radiation heat transfer between particulate corium and core N/A N/A M L M K 504 Radiation heat transfer between corium and lower head N/A N/A M L M K 506 Particulate Corium Bed Porosity N/A N/A N/A M L L K 507 Change in temperature of penetration tubes (control rod quide tubes, drain lines, and instrumetation tubes L L H M L K 508 Deformation of RPV lower head L L L H M L	499		Heat transfer between light metal layer and lower head	N/A	N/A	М	М	L	Р
501 Heat transfer between heavy metal layer in corium pool and penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes) N/A N/A L L L L P 502 Heat transfer between heavy metal layer in corium pool and metal-oxide layer in corium N/A N/A N/A L L L L P 503 Radiation heat transfer between particulate corium and core N/A N/A N/A M L M K 504 Radiation heat transfer between corium and core N/A N/A N/A M L M K 505 Radiation heat transfer between corium and lower head N/A N/A N/A M L L L K 506 Particulate Corium Bed Porosity N/A N/A N/A H L L L K 507 Change in temperature of penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes	500		Heat transfer between heavy metal layer in corium pool and lower head	N/A	N/A	L	L	L	Р
502 Heat transfer between heavy metal layer in corium pool and metal-oxide layer in corium N/A N/A L L L P 503 Radiation heat transfer between particulate corium and core N/A N/A M L M K 504 Radiation heat transfer between light metal layer and core N/A N/A M L M K 505 Radiation heat transfer between corium and lower head N/A N/A M L L K 506 Particulate Corium Bed Porosity N/A N/A N/A H L L L P 507 Change in temperature of penetration tubes (control rod quide tubes, drain lines, and instrumetation tubes L L L H M M K 508 Change in temperature of RPV lower head L L L H M L K 509 Deformation of RPV lower head by thermal stress L L H M L K 510 Oxidation reaction between penetration tubes (control rod quide tubes, drain lines, and instrumetation tubes) and steam (including hydrogen generation and reaction heat)	501		Heat transfer between heavy metal layer in corium pool and penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes)	N/A	N/A	L	L	L	Ρ
503 Radiation heat transfer between particulate corium and core N/A N/A M L M K 504 Radiation heat transfer between light metal layer and core N/A N/A M L M K 505 Radiation heat transfer between corium and lower head N/A N/A M L M K 506 Particulate Corium Bed Porosity N/A N/A H M L P 507 Change in temperature of penetration tubes (control rod quide tubes, drain lines, and instrumetation tubes) L L H M M K 508 Deformation of RPV lower head L L L H M M K 509 Deformation of RPV lower head by thermal stress L L H M L P 510 Failure of RPV rozzle welding by thermal stress N/A N/A M M L P 511 Oxidation reaction between penetration tubes) and instrumetation tubes) and instrumetation tubes) and instrumetation tubes) and stress N/A L M L H P 512 <td>502</td> <td></td> <td>Heat transfer between heavy metal layer in corium pool and metal-oxide layer in corium</td> <td>N/A</td> <td>N/A</td> <td>L</td> <td>L</td> <td>L</td> <td>Р</td>	502		Heat transfer between heavy metal layer in corium pool and metal-oxide layer in corium	N/A	N/A	L	L	L	Р
504 Radiation heat transfer between light metal layer and core N/A N/A M L M K 505 Radiation heat transfer between corium and lower head N/A N/A N/A H L L K 506 Particulate Corium Bed Porosity N/A N/A N/A H M L L K 507 Change in temperature of penetration tubes (control rod quide tubes, drain lines, and instrumetation tubes L L H L H K 508 Change in temperature of RPV lower head L L L H M K 509 Deformation of RPV lower head by thermal stress L L H M L K 510 Failure of RPV nozzle welding by thermal stress N/A N/A M M L P 511 Oxidation reaction between penetration tubes) and isterumetation tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between penetration tubes) and information and reaction heat) N/A L M L <	503		Radiation heat transfer between particulate corium and core	N/A	N/A	М	L	М	к
505 Radiation heat transfer between corium and lower head N/A N/A N/A H L L K 506 Particulate Corium Bed Porosity N/A N/A N/A H M L P 507 Change in temperature of penetration tubes (control rod quide tubes, drain lines, and instrumetation tubes L L H L H K K 508 Change in temperature of RPV lower head L L L H M M K 509 Deformation of RPV lower head by thermal stress L L H M M K 510 Failure of RPV nozzle welding by thermal stress N/A N/A M M L P 511 Oxidation reaction between penetration tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between lower head and steam (including hydrogen generation and reaction heat) N/A L M L M P 513 Change in pressure in lower plenum L L M L L	504		Radiation heat transfer between light metal layer and core	N/A	N/A	М	L	М	к
506 Particulate Corium Bed Porosity N/A N/A N/A H M L P 507 Change in temperature of penetration tubes (control rod quide tubes, and instrumetation tubes) L L H L H K 508 Change in temperature of RPV lower head L L H M M K 509 Deformation of RPV lower head by thermal stress L L H M L K 510 Failure of RPV nozzle welding by thermal stress N/A N/A M M L P 511 Oxidation reaction between penetration tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between penetration tubes) and steam (including hydrogen generation and reaction heat) N/A L M L M P 513 Change in pressure in lower plenum L L M L K 514 Change in gas temperature in lower plenum L L M M K 515 Change in gas temperature in lower plenum	505		Radiation heat transfer between corium and lower head	N/A	N/A	н	L	L	к
507 Change in temperature of penetration tubes (control rod quide tubes, and instrumetation tubes) L L H L H K 508 Change in temperature of RPV lower head L L H M M K 509 Deformation of RPV lower head by thermal stress L L H M L K 510 Failure of RPV nozzle welding by thermal stress L L H M L P 511 Oxidation reaction between penetration tubes (control rod guide tubes, and instrumetation tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between lower head and steam (including hydrogen generation and reaction heat) N/A L M L M P 513 Oxidation reaction between lower plenum L L L M K K 514 Change in water temperature in lower plenum L L M M K 515 Change in gas temperature in lower plenum L L M M K	506		Particulate Corium Bed Porosity	N/A	N/A	н	М	L	Р
508 Change in temperature of RPV lower head L L H M M K 509 Deformation of RPV lower head by thermal stress L L H M L K 510 Failure of RPV lower head by thermal stress L L H M L K 510 Failure of RPV lower head by thermal stress N/A N/A M M L P 511 Oxidation reaction between penetration tubes (ontrol rod guide tubes, drain lines, and instrumetation tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between lower head and steam (including hydrogen generation and reaction heat) N/A L M L M P 513 Oxidation in pressure in lower plenum L L H M K 514 Change in water temperature in lower plenum L L M L L K 515 Change in gas temperature in lower plenum L L M M K	507		Change in temperature of penetration tubes (control rod quide tubes, drain lines, and instrumetation tubes	L	L	н	L	н	к
509 Deformation of RPV lower head by thermal stress L L H M L K 510 Failure of RPV nozzle welding by thermal stress N/A N/A M M L P 511 Oxidation reaction between penetration tubes (control rod guide tubes, and instrumetation tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between penetration and reaction heat) N/A L M L H P 513 Oxidation reaction petween penetration and reaction heat) N/A L M L M P 514 Oxidation reaction petween penetration and reaction heat) N/A L M L M K 513 Oxidation reaction petween penetration and reaction heat) N/A L M L M K 514 Change in pressure in lower plenum L L M L K 515 Change in gas temperature in lower plenum L L M M K	508		Change in temperature of RPV lower head	L	L	н	М	М	к
510 Failure of RPV nozzle welding by thermal stress N/A N/A M M L P 511 Oxidation reaction between penetration tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between penetration tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between lower head and steam (including hydrogen generation and reaction heat) N/A L M L M P 513 Change in pressure in lower plenum L L H M K 514 Change in gas temperature in lower plenum L L M M K 515 Change in gas temperature in lower plenum L L M M K	509		Deformation of RPV lower head by thermal stress	L	L	н	М	L	к
511 Oxidation reaction between penetration tubes) and guide tubes, drain lines, and instrumetation tubes) and steam (including hydrogen generation and reaction heat) N/A L M L H P 512 Oxidation reaction between lower head and steam (including hydrogen generation and reaction heat) N/A L M L M P 513 Change in pressure in lower plenum L L H H M K 514 Change in gas temperature in lower plenum L L M L K 515 Change in gas temperature in lower plenum L L M M K	510		Failure of RPV nozzle welding by thermal stress	N/A	N/A	М	М	L	Р
512 Oxidation reaction between lower head and steam (including hydrogen generation and reaction heat) N/A L M L M P 513 Change in pressure in lower plenum L L H H M K 514 Change in water temperature in lower plenum L L M L K 515 Change in gas temperature in lower plenum L L M M K	511		Oxidation reaction between penetration tubes (control rod guide tubes, drain lines, and instrumetation tubes) and steam (including hydrogen generation and reaction heat)	N/A	L	М	L	н	Р
513 Change in pressure in lower plenum L L H M K 514 Change in water temperature in lower plenum L L M L K 515 Change in gas temperature in lower plenum L L M M K	512		Oxidation reaction between lower head and steam (including hydrogen generation and reaction heat)	N/A	L	М	L	М	Р
514 Change in water temperature in lower plenum L L M L L 515 Change in gas temperature in lower plenum L L M M M	513		Change in pressure in lower plenum	L	L	н	н	М	к
515 Change in gas temperature in lower plenum L L M M M K	514		Change in water temperature in lower plenum	L	L	м	L	L	к
	515		Change in gas temperature in lower plenum	L	L	м	М	М	к

516	Change in gas composition in lower plenum	L	L	L	L	н	к
517	Decompression boiling	м	L	М	L	М	к
518	Change in temperature inside corium	N/A	N/A	н	М	L	Р
519	Non-uniform corium spreading in lower head	N/A	N/A	н	М	L	Р
520	Evaporation of materials from inside corium (including FP)	N/A	N/A	м	L	L	Р
521	Corium jet into water pool	N/A	N/A	н	М	М	Р
522	Formation of corium pool	N/A	N/A	н	М	L	Р
523	Stratification of corium pool	N/A	N/A	н	М	L	Р
524	Atomization of corium by contanct with water (jet breakup)	N/A	N/A	н	М	L	Р
525	Change in temperature in light metal layer	N/A	N/A	н	м	L	Р
526	Change in temperature in heavy metal layer	N/A	N/A	н	М	L	Р
527	Change in composition of particulate corium	N/A	N/A	н	М	L	Р
528	Change in size and shape of particulate corium	N/A	N/A	н	L	L	Р
529	Crust generation by solidification of corium	N/A	N/A	н	L	L	Р
530	Accumulation and bed formation of particulate corium	N/A	N/A	н	L	L	Р
531	Non-uniform spreading of particulate corium bed	N/A	N/A	н	м	L	Р
532	Change in temperature of particulate corium bed	N/A	N/A	н	м	L	Р
533	Decay heat in particulate corium	N/A	N/A	н	м	_	P
534	Oxidation reaction between light metal layer and water	N/A	N/A	м	1	н	P
504	(steam) (including hydrogen generation and reaction heat)	N/A	N/A	IVI			, D
535	FCI pre-mixing by contact between conum and water poor	N/A	IN/A		L 	L	P
536	Particulation of corium in water pool and rapid steam	N/A	N/A	н	M	M	P
537	generation (FCI)	N/A	N/A	н	M	M	P
538	Pressure wave by FCI	N/A	N/A	н	M	M	Р
539	Temperature increas by FCI	N/A	N/A	н	M	M	Р
540	Failure of RPV lower head by FCI	N/A	N/A	н	М	М	Р
541	Scattering of corium and material in lower plenum by FCI	N/A	N/A	н	М	М	Р
542	Impact for FCI by seawater	N/A	N/A	L	L	L	U
543	Mixing state and physical property of corium	N/A	N/A	н	М	L	Р
544	(including hydrogen generation and reaction heat)	N/A	N/A	М	L	М	U
545	Natural convection in corium pool	N/A	N/A	н	L	L	Р
546	Decay heat of corium	N/A	N/A	н	L	L	Р
547	Solidification of corium	N/A	N/A	н	М	L	Р
548	Flow of water in lower plenum	L	L	н	L	L	к
549	Reflooding of molten material in lower plenum by water injection	N/A	N/A	н	М	М	к
550	Flow of gas in lower plenum	L	L	М	L	L	к
551	Change in an amount of purge water in CRD guide tube	м	L	н	L	L	к
552	Change in water level in lower plenum	м	М	н	L	М	к
553	Radiation decomposition of water	L	L	L	L	L	к
554	Bubble formation in crust	N/A	N/A	м	L	L	Р
555	Water inflow into crust through crack on surface of crust	N/A	N/A	м	М	L	Р
556	Oxidation reaction between crust and water (steam) (including hydrogen generation and reaction heat)	N/A	N/A	М	L	М	U
557	Change in physical property by material mixing in crust	N/A	N/A	н	М	М	U
558	Change in temperature of crust	N/A	N/A	н	М	М	Ρ
559	Decay heat in crust	N/A	N/A	н	L	L	Ρ
560	Recriticality	N/A	N/A	н	М	L	Р
561	Gap formation between corium and lower head	N/A	N/A	н	М	L	Р
562	Inflow of coolant into gap between corium and lower head	N/A	N/A	н	М	М	Р
563	Crack formation on lower head	N/A	N/A	н	L	L	Ρ
564	Inflow of coolant into crack on lower head	N/A	N/A	н	L	L	Р
565	Corrosion of lower head by corium jet	N/A	N/A	н	М	М	Р
566	Erosion of lower head by corium pool	N/A	N/A	н	м	М	Р
567	Flow of corium out of lower head bottom section by lower head failure	N/A	N/A	N/A	н	L	Р
568	Crust remelting due to change in the heat transfer status to	N/A	N/A	н	L	L	Р
000	corium or water				-	-	

569	Particulate corium remelting due to change in the heat transfer status	N/A	N/A	н	L	L	Р
570	Change in area of failire opening in lower head bottom section	N/A	N/A	N/A	н	L	Р
571	Formation of flow path by ablation between control rod	N/A	N/A	н	м	М	Р
572	Formation of flow path by jet impingemnet to control rod	N/A	N/A	н	м	М	Р
573	Flow of corium through failed control rod guide tubes from/to	N/A	N/A	н	м	L	Р
574	Iower plenum Flow of water through failed control rod guide tubes from/to	N/A	N/A	н	м	_	P
575	lower plenum Flow of gas through failed control rod guide tubes from/to	N/A	N/A			<u>с</u>	
575	lower plenum Purge water steaming in control rod guide tubes due to	N/A	N/A	м		IVI	
5/6	corium inflow	N/A	N/A	M	IVI	IVI	P
577	guide tube internals	N/A	N/A	N/A	н	н	Р
578	Changes in breached area in control rod guide tubes to pedestal (including blockage)	N/A	N/A	N/A	М	М	Р
579	Ejection of control rod guide tubes	N/A	N/A	N/A	н	н	Р
580	Flow of corium out of control rod guide tubes into pedestal	N/A	N/A	N/A	н	L	Р
581	Flow of water out of control rod guide tubes into pedestal	N/A	N/A	N/A	н	н	Р
582	Flow of gas out of control rod guide tubes into pedestal	N/A	N/A	N/A	н	н	Р
583	Formation of flow path between SRM/IRM tubes and lower plenum	N/A	N/A	М	м	М	Р
584	Formation of flow path by jet impingemnet to SRM/IRM tubes	N/A	N/A	м	м	М	Р
585	Flow of corium through failed SRM/IRM tubes from/to lower plenum	N/A	N/A	м	м	L	Р
586	Flow of water through failed SRM/IRM tubes from/to lower	N/A	N/A	М	М	L	Р
587	Flow of gas through failed SRM/IRM tubes from/to lower	N/A	N/A	м	н	М	Р
588	Ejection of SRM/IRM tubes	N/A	N/A	N/A	н	М	Р
589	Flow of corium out of SRM/IRM tubes into pedestal	N/A	N/A	N/A	м	L	Р
590	Flow of water out of SRM/IRM tubes into pedestal	N/A	N/A	N/A	м	М	Р
591	Flow of gas out of SRM/IRM tubes into pedestal	N/A	N/A	N/A	н	М	Р
592	Formation of flow path between TIP/ICM tubes and lower	N/A	N/A	н	н	н	Р
593	plenum Formation of flow path by jet impingement to TIP/ICM tubes	N/A	N/A	м	м	м	Р
594	Flow of corium through failed TIP/ICM tubes from/to lower	N/A	N/A	м	м		P
595	plenum Flow of water through failed TIP/ICM tubes from/to lower	N/A	N/A	M	M	_	P
506	plenum Flow of gas through failed TIP/ICM tubes from/to lower	N/A	N/A	M	IVI	L M	P
590	plenum Formation of flow path to Pedestal by ablation of TIP/ICM	N/A	N/A	M		IVI	P
597	tube internals	N/A	N/A	N/A	н	н	P
599		N/A	N/A	N/A	н	M	P -
600	Flow of corium out of TIP/ICM tubes into pedestal	N/A	N/A	N/A	м	L	Р
601	Flow of water out of TIP/ICM tubes into pedestal	N/A	N/A	N/A	М	М	Р
602	Flow of gas out of TIP/ICM tubes into pedestal	N/A	N/A	N/A	н	М	Р
603	Flow of gas out of TIP tubes into PCV	N/A	N/A	N/A	н	н	Р
604	lines	N/A	N/A	N/A	М	М	Р
605	Changes in breached area in RPV drain lines to pedstal (including blockage)	N/A	N/A	N/A	м	М	Р
606	Flow of corium out of RPV drain lines into pedestal	N/A	N/A	N/A	м	М	Р
607	Flow of water out of RPV drain lines into pedestal	N/A	N/A	N/A	м	М	Ρ
608	Flow of gas out of RPV drain lines into pedestal	N/A	N/A	N/A	м	М	Ρ
609	Deformation of lower head	N/A	N/A	н	L	L	Р
610	Corium Focusing Effect on Lower Head Sidewall	N/A	N/A	L	L	L	Р
611	Change in area of failire opening in lower head side section	N/A	N/A	N/A	м	М	Ρ
612	Flow of corium out of lower head side section by lower head failure	N/A	N/A	N/A	н	L	Ρ
613	Failure of shroud support leg	N/A	N/A	М	L	L	Р
614	Change in flow resistence in shroud support leg	N/A	N/A	L	L	L	к
615	FP deposition on lower head	L	L	L	L	L	Р
616	FP re-vaporization	L	L	L	L	L	к
617	Decay heat generation from FP	L	L	м	L	L	к
618	FP release from corium surface	N/A	N/A	м	м	М	U
619	FP reaction including iodine chemistry	L	L	L	L	L	Р
620	Adsorption and release of gaseous FP	L	L	L	L	L	Р
621	Buckling of Control Rod Guide Tubes	N/A	н	L	L	М	к
L	I					j	

c00		Radiation heat transfer between corium and pump deck	N1/A	N//A		1.		
622		bottom surface	N/A	N/A	П	L	п	Р
623		corrosion of structure in lower plenum by sait content of seawater (including marine lives)	L	L	L	L	L	U
624		Melting point change for lower head materials	N/A	N/A	н	М	М	Р
625		Eutectic (Corium and lower head materials)	N/A	N/A	н	М	М	Р
626		Melting of lower head penetration lines	N/A	N/A	н	н	н	Ρ
627		Melting of lower head wall	N/A	N/A	н	м	М	Ρ
628		Melting of jet pump	N/A	N/A	М	L	L	Р
629		Melting of pump deck	N/A	N/A	М	L	L	Р
630		Melting of shroud	N/A	N/A	М	L	L	Р
631		Influence for heat transfer by salt deposition	L	L	М	L	L	U
632		Seasalt intake to corium	N/A	N/A	н	н	н	U
633		Seasalt impact for corium thermodynamic properties	N/A	N/A	н	L	L	U
634		Re-solution of salt by reflooding	L	L	м	L	L	Р
635		Influence on Heat Transfer by Seasalt Concentration	L	L	L	L	L	Р
636		Influence on Instrumentation and Measurements by Seasalt	1	1		1	1	U
000		Concentration Change			-	-		0
637		Seasait impact for FP reaction and composition	L .	L .	L	L	L .	Р
638		Corrosion of structure in lower plenum by boron	L	L	L	L	L	U
639		Influence for heat transfer by boron deposition	L	L	М	L	L	U
640	During 1	Re-solution of boron by reflooding	L	L	М	L	L	Р
641	ation	Heat transfer between recirculation loop piping and water	L	L	L	L	L	К
642	Loop	Heat transfer between recirculation loop piping and gas	L	L	L	L	L	к
643		Heat Transfer to Drywell through Lagging Material	L	L	L	L	L	к
644		Radiation heat transfer to drywell	L	L	L	L	L	к
645		Change in temperature of recirculation loop piping	L	L	L	L	М	к
646		Change in pressure in recirculation loop piping	L	L	L	L	М	к
647		Change in water level in recirculation loop piping	L	L	L	L	М	к
648		Change in water temperature in recirculation loop piping	L	L	L	L	М	к
649		Change in flow of water and/or steam in in recirculation loop	L	L	L	L	L	к
650		Change in gas temperature in recirculation loop piping	L	L	L	L	М	к
651		Change in gas composition in recirculation loop piping	L	L	L	L	н	к
652		Change in flow of corium in recirculation loop piping	N/A	N/A	L	L	L	Р
653		Oxidation reaction between recirculation loop piping and	L	L	L	L	М	Р
654		Leakage of gas from breached gasket or PLR pump seal	N/A	м	н	м	н	к
655		Leakage of water from breached gasket or PLR pump seal	N/A	M	н	м	M	к
656		Water Radiolysis	1		1			к
657		Rubble formation in crust	N/A	N/A		-		P
037		Elow path blockage in regirculation loop piping by	N/A	N/A	L	L	L.	r
658		solidification of corium	N/A	N/A	L	L	L	U
659		Corrosion of structure in recirculation loop piping by salt content of seawater (including marine lives)	L	L	L	L	L	U
660		Influence for heat transfer by salt deposition	L	L	М	L	L	U
661		Seasalt intake to corium	N/A	N/A	L	L	L	U
662		Re-solution of salt by reflooding	L	L	L	L	L	Ρ
663		Influence on Heat Transfer by Seasalt Concentration Change	L	L	L	L	L	Р
664		Influence on Instrumentation and Measurements by Seasalt	L	L	L	L	L	U
665		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
666		Corrosion of structure in recirculation loop piping by boron	L	L	L	L	L	U
667		Influence for heat transfer by boron deposition	L	L	L	L	L	Р
668		Re-solution of boron by reflooding	L	L	L	L	L	Р
669		FP deposition on recirculation loop	L	L		L	L	Р
670		EP re-vaporization	-	-			-	ĸ
671		Decay heat generation from EP	-		-	-	-	ĸ
670					L			ĸ
072			L.	L	1/1	 		· · ·
673		PP release from corium sufface	N/A	N/A	M	M	М	U

674	I	I	FP reaction including iodine chemistry	L	L	L	L	L	Р
675			Advantion and release of raseous EP				1		Р
676				L.	L.	м			
070				N/A	IN/A	IVI			г р
677	PCV	Pedesta	Liquid film flow of corium at outer surface of penetration	L	L	L	L	L	Р
678		I/Cavity	pipes (control rod guide tube, drain line, instrumentation tube) sticking out from RPV bottom(< Liquid film flow of corium at protrusion surface of penetration pipes (control rod guide tube, drain line, instrumentation tube))	N/A	N/A	N/A	М	L	Ρ
679			Thermal conduction of penetration pipes (control rod guide tube, drain line, instrumentation tube) sticking out from RPV bottom (< Thermal conduction on protrusion surface of penetration pipes (control rod guide tube, drain line; instrumentation	L	L	L	М	L	Ρ
680			tube)) Heat transfer between corium and outer surface of penetration pipes (control rod guide tube, drain line, instrumentation tube) sticking out from RPV bottom (< Heat transfer between corium and outer surface of protrusion on penetration pipes (control rod guide tube, drain line, instrumentation tube))	N/A	N/A	N/A	м	L	Ρ
681			Heat transfer between corium and water (including CHF)	N/A	N/A	N/A	н	н	Р
682			Heat transfer between corium and gas	N/A	N/A	N/A	н	н	Ρ
683			Heat transfer between crust and water (including CHF)	N/A	N/A	N/A	н	н	Р
684			Heat transfer between crust and gas	N/A	N/A	N/A	н	н	Р
685			Heat transfer between crust and corium (including heat transfer enhancement at gas generation due to MCCI)	N/A	N/A	N/A	н	н	Р
686			Heat transfer between corium particle and water	N/A	N/A	N/A	н	н	Р
687			Heat transfer between corium particle and gas	N/A	N/A	N/A	н	н	Р
688			Heat transfer between corium particle and pedestal	N/A	N/A	N/A	н	н	Р
689			Tioor/wall Heat transfer between pedestal floor/wall and corium	N/A	N/A	N/A	н	н	Р
690			Heat transfer between pedestal floor/wall and crust	N/A	N/A	N/A	н	н	P
691			Heat transfer between nedestal floor/wall and water	1		1	н	н	P
692			Heat transfer between pedestal floor/wall and ras		-		м		P
693			Heat transfer from lower head to day in pedestal region		-		м	-	P
033			Heat transfer from protrusion of penetration pipes (control	L	L	L	IVI	L	r
694			rod guide tube, drain line, instrumentation tube) to water (leak flow)	N/A	N/A	N/A	М	L	К
695			Heat transfer from protrusion of penetration pipes (control rod guide tube, drain line, instrumentation tube) to gas	L	L	L	м	L	к
696			Radiation between lower head and pedestal floor/wall	L	L	L	м	L	к
697			Radiation between lower head and pedestal internal structure	L	L	L	м	L	к
698			Radiation between corium and pedestal wall	N/A	N/A	N/A	м	М	к
699			Radiation between corium and RPV wall	N/A	N/A	N/A	м	М	к
700			Radiation between corium and pedestal internal structure	N/A	N/A	N/A	М	М	к
701			Radiation between crust and pedestal wall	N/A	N/A	N/A	М	М	к
702			Radiation between crust and RPV wall	N/A	N/A	N/A	м	М	к
703			Radiation between crust and pedestal internal structure	N/A	N/A	N/A	м	М	к
704			Radiation between corium particle and pedestal wall	N/A	N/A	N/A	м	М	к
705			Radiation between corium particle and RPV wall	N/A	N/A	N/A	м	М	к
706			Radiation between corium particle and pedestal internal	N/A	N/A	N/A	L	L	к
707			Particulate Corium Bed Porosity	N/A	N/A	N/A	н	L	Р
708			Pedestal deformation/failure due to thermal stress	N/A	N/A	N/A	L	L	Р
709			Pedestal wall heatup due to corium adhesion to pedestal	N/A	N/A	N/A	н	н	Р
710			waii Pressure change in pedestal	L	L	L	н	м	к
711			Gas temperature change in pedestal	L	L	L	н	м	к
712			Water temperature change in pedestal		-		н		к
713			Thermal conduction / Temperature change of corium	N/A	N/A	N/A	н	н	P
714			Thermal conduction / Temperature change of crust	N/A	N/A	N/A			P
714			Thermal conduction / Temperature change of edestal	1	11/2	11/2			r
740			floor/wall					11	N V
747					L .			IVI	~
717			Local gas now and turbulence		L .	L .	L	L .	۲
/18			vvaler flow on pedestal floor Ejection conditions (corium, mixture state of water/steam) of	L	L	L	н	L	ĸ
/19			corium jet Oxidation of grating due to collision of corium jet with grating	N/A	N/A	N/A	н	н	۲
720 721			and oxidation Splash of corium towards pedestal floor by collision of	N/A N/A	N/A N/A	N/A		Н	U P
	L								

	Г	corium with grating				1		
722		Gas composition change in pedestal	L	L	L	м	н	к
723		Erosion of pedestal floor / wall	N/A	N/A	N/A	н	н	Ρ
724		Physical properties of concrete ingredients (C, Si, etc.)	N/A	N/A	N/A	н	н	Р
725		Mass transfer of concrete ingredients into corium	N/A	N/A	N/A	н	н	Р
726		Water evaporation from concrete by concrete heating	N/A	N/A	N/A	н	н	Р
727		Gas generation (H2, CO, CO2, etc.) from concrete-corium interaction (reaction?)	N/A	N/A	N/A	н	н	Ρ
728		Aerosol generation from concrete-corium interaction (reaction?)	N/A	N/A	N/A	н	н	Р
729		Heat generation from chemical reaction between corium and concrete ingredients	N/A	N/A	N/A	н	н	Ρ
730		Corium flow / spread in pedestal	N/A	N/A	N/A	н	М	Ρ
731		Corium flow into drywel by spread in pedestal (Mark-I)	N/A	N/A	N/A	н	н	Р
732		Corium entrainment in pedestal by sparging gas	N/A	N/A	N/A	н	н	Р
733		Generation of corium particle due to breakup at jet drop	N/A	N/A	N/A	н	н	Ρ
734		Corium ejection from crack in the crust (includion generation of corium particle)	N/A	N/A	N/A	н	н	Ρ
735		Outflow of corium particle with water flow	N/A	N/A	N/A	L	н	Р
736		Composition of corium particle	N/A	N/A	N/A	м	м	Р
737		Size / configuration of corium particle	N/A	N/A	N/A	м	М	Р
738		Aggregation / debris bed formation of corium particle	N/A	N/A	N/A	м	М	Р
739		Generation / attenuation of decay heat from corium particle	N/A	N/A	N/A	н	н	Р
740		Temperature change of corium particle bed	N/A	N/A	N/A	н	н	Р
741		Corium solidification	N/A	N/A	N/A	н	м	Р
742		Generation / attenuation of decay heat from corium	N/A	N/A	N/A	н	н	Р
743		Oxidation reaction (including generation of hydrogen and reaction heat) between corium ingredients and water (steam)	N/A	N/A	N/A	н	н	U
744		Mixture state (fuel, structure, concrete, etc.) and physical properties of corium ingredients	N/A	N/A	N/A	н	н	Р
745		Corium stratification	N/A	N/A	N/A	н	м	Р
746		Remixing of corium stratification associated with corium flow and internal gas generation	N/A	N/A	N/A	н	М	Р
747		Change in corium deposit conditions on the pedestal floor	N/A	N/A	N/A	н	L	Р
748		Crust segregation and waftage	N/A	N/A	N/A	н	М	Р
749		Crust generation on the surface of penetration pipes sticking	N/A	N/A	N/A	н	L	U
750		Crust remelting due to change in the heat transfer status to	N/A	N/A	N/A	н	н	Р
751		Particulate corium remelting due to change in the heat	N/A	N/A	N/A	н	н	Р
752		Water flow into crust	N/A	N/A	N/A	н	м	Р
753		Bubble formation in crust	N/A	N/A	N/A	м	М	Р
754		Crack generation in crust	N/A	N/A	N/A	н	М	Р
755		Generation / attenuation of decay heat from crust	N/A	N/A	N/A	н	н	к
756		Oxidation reaction (including generation of hydrogen and	N/A	N/A	N/A	м	н	U
757		Mixture state (fuel, structure, concrete, etc.) and physical	N/A	N/A	N/A	н	н	Р
758		Recriticality	N/A	N/A	N/A	н	L	Р
759		Oxidation (including generation of hydrogen and reaction	L	L	L	м	н	Р
760		Radiation decomposition of water	L	L	L	L	L	к
761		FCI's premixing due to corium contact to water pool	N/A	N/A	N/A	м	м	Р
762		FCI triggering by vapor film collapse	N/A	N/A	N/A	н	м	Р
763		Corium atomization and rapid steam generation (FCI) in	N/A	N/A	N/A	н	н	Р
764		Pressure wave due to FCI	N/A	N/A	N/A	н	м	Р
765		Temperature increas of water and gas by FCI	N/A	N/A	N/A	н	м	Р
766		Pedestal failure due to FCI	N/A	N/A	N/A	н	н	Р
767		Dispersion of corium and pedestal internal material due to	N/A	N/A	N/A	н	н	Р
768		Impact for FCI by seawater	N/A	N/A	N/A	L	L	U
769		Droplet behavior in the pedestal free space	L	L	L	L	L	Р
770		Condensation heat transfer on the pedestal wall and internal	L	L	L	L	L	Р
771		Interaction between gas and water film flow on the pedestal	L	L	L	L	L	Р
772		FP particle transport by gas in the pedestal	L	L	L	L	L	Р
	1		_	_	_	I –	-	. ·

773		FP particle agglomeration/fragmentation in the pedestal	L	L	L	L	L	Ρ
774		FP particle deposition on the pedestal wall and internal surfaces	L	L	L	L	L	Ρ
775		FP transport by water flow on the pedestal wall and internal surfaces	L	L	L	L	L	Р
776		FP re-entrainment	L	L	L	L	L	Р
777		FP deposition on pedestal wall	L	L	L	М	М	Ρ
778		FP re-vaporization	L	L	L	М	М	к
779		Decay heat generation from FP	L	L	L	М	М	к
780		FP release from corium surface	N/A	N/A	N/A	М	М	U
781		FP reaction including iodine chemistry	L	L	L	L	L	Р
782		Adsorption and release of gaseous FP	L	L	L	L	L	Р
783		Direct Containment Heating (DCH)	N/A	N/A	N/A	н	н	Р
784		Pedestal water level change	L	L	L	н	м	Р
785		Thermal stratification	L	L	L	L	L	Р
786		Collision of corium with penetration tube support beams and	N/A	N/A	N/A	М	М	U
787		Collision of corium with CRD purge lines and oxidation	N/A	N/A	N/A	М	М	U
788		Collision of corium with other structures in the pedestal and	N/A	N/A	N/A	М	м	U
		Oxidation						-
789		RPV lower head	N/A	N/A	N/A	М	M	U
790		Eutectic (Corium and metal in pedestal internals)	N/A	N/A	N/A	н	н	U
791		Melting of penetration pipes sticking out of RPV lower head	N/A	N/A	N/A	н	н	Ρ
792		Melting of gratings	N/A	N/A	N/A	L	L	Р
793		Melting of penetration tube support beams	N/A	N/A	N/A	L	L	Р
794		Melting of CRD purge lines	N/A	N/A	N/A	L	L	Р
795		Melting of other structures in the pedestal	N/A	N/A	N/A	н	н	U
796		Seasalt intake to corium	N/A	N/A	N/A	L	L	U
797		Seasalt impact for corium thermodynamic properties	N/A	N/A	N/A	L	L	U
798		Corrosion of pedestal internals by seasalt (including marine	L	L	L	L	L	U
799		Salt effects on heat transfer	L	L	L	L	L	U
800		Salt remelting from flood	L	L	L	L	L	U
801		Influence on Heat Transfer by Seasalt Concentration	L	L	L	L	L	Р
802		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
803		Boron corrosion of pedestal internal structure						U
804		Boron effects on heat transfer	L	L	L	L	L	U
805		Boron remelting from flood					_	P
806		FP aerosol absorption in water pool at upper surface of	N/A	N/A	N/A		_	P
807		corium	N/A	N/A	N/A	M		P
808		Corium flow into sump pit (drainage pit) and reaction	N/A	N/A	N/A	н	н	P
809		Heat transfer between sumn floor/wall and corium	N/A	N/A	N/A	н	н	P
810		Heat transfer between sump floor/wall and contin	N/A	N/A	N/A			P
811		Heat transfer between sump floor/wall and crist	N/A	N/A	N/A	н	н	P
812		Heat transfer between sump rover and corium	N/A	N/A	N/A			P
012		Heat transfer between sump cover and count	N/A	N/A	N/A	-	-	, D
013		Heat transfer between sump cover and catium particle	N/A	N/A	N/A		с 	P
014		Heat consolity of structure inside sump	N/A	N/A	N/A	L	L	г
010			N/A	N/A	N/A	IVI	IVI	
816		Deposition situation of corium on pedestal floor	N/A	N/A	N/A	н	M	P
817	Drywell	Attack on containment vessel shell (interaction between	N/A	N/A	N/A	н	н	Р
818	51,1101	metal and corium) Containment vessel penetration seal degradation (Seal	N/A	N/A	N/A	н	н	U
819		degradation at containment vessel penetration)	L	L	L	н	н	Р
820		penetration	L	L	L	н	М	Р
821		cas leak from deteriorated part of containment vessel	L	L	L	н	н	Р
822		Detormation / failure of drywell internal equipment due to thermal stress	L	L	L	L	L	Р
823		Deformation / failure of drywell wall by thermal stress	L	L	L	н	н	Р
824		Heat transfer between corium and water (including CHF)	N/A	N/A	N/A	н	н	Ρ

		-					
825	Heat transfer between corium and gas	N/A	N/A	N/A	н	н	Р
826	Heat transfer between crust and water (including CHF)	N/A	N/A	N/A	н	н	Р
827	Heat transfer between crust and gas	N/A	N/A	N/A	н	н	Ρ
828	Heat transfer between crust and corium	N/A	N/A	N/A	н	н	Р
829	Heat transfer between corium particle and water	N/A	N/A	N/A	н	н	Р
830	Heat transfer between corium particle and gas	N/A	N/A	N/A	н	н	Р
831	Heat transfer between corium particle and drywell floor/wall	N/A	N/A	N/A	н	н	Р
832	Heat transfer between drywell floor/wall and corium	N/A	N/A	N/A	н	н	Р
833	Heat transfer between drywell floor/wall and crust	N/A	N/A	N/A	н	н	Р
834	Heat transfer between drywell floor/wall and water	L	L	L	н	н	Р
835	Heat transfer between drywell floor/wall and gas	L	L	L	м	L	Р
836	Heat transfer from drywell internal structure (lagging	L	L	L	м	L	Р
837	Heat transfer from drywell internal structure (lagging material biological shield wall) to gas	L	L	L	м	L	Р
838	Radiation between corium and drywell wall	N/A	N/A	N/A	м	М	к
839	Radiation between corium and drywell internal structure	N/A	N/A	N/A	м	м	к
840	Radiation between crust and drywell wall	N/A	N/A	N/A	м	М	к
841	Radiation between crust and drywell internal structure	N/A	N/A	N/A	м	М	к
842	Radiation between corium particle and drywell wall	N/A	N/A	N/A	м	м	к
843	Radiation between corium particle and drywell internal	N/A	N/A	N/A	м	м	к
844	structure Particulate Corium Bed Porosity	N/A	N/A	N/A	м		P
845	Gas stratification in drawell	1	1	1	н	н	к
846	let/nume das interaction and entrainment effects	-	-	1			P
847	Pressure change in drawell	-	1	1	-	н	K
848	Gas temperature change in dravell	-	-	1	н	н	ĸ
849	Gas composition change in dravell	-	-	1	м	н	ĸ
850	Thermal conduction / temperature change of corium	N/A	N/A	N/A	M		P
851	Thermal conduction / temperature change of crust	N/A	N/A	N/A	M	н	P
952	Thermal conduction / temperature change of drawell	1	1	1	M		ĸ
052	floor/wall Thermal conduction / temperature change of drywell internal	-		-	M		K
054					IVI M		ĸ
854	Coo flow is desual		L	L	M	L	ĸ
000						-	
850	Local gas now and turbulence	L .	L	L	L	L	P V
857	Water now in dryweir	L	L	L		M	N D
858	Dryweir water level change	L .	L	L		IVI	P
829		L	L	L	L	L	P
860	Erosion of arywell floor (concrete)	N/A	N/A	N/A	н	н	P
801	Physical properties of concrete ingredients (C, Si, etc.)	N/A	IN/A	N/A			P
862		N/A	IN/A	N/A			P
863	Gas generation (H2, CO, CO2, etc.) from concrete-corium	N/A	N/A	N/A	н	н	P
864	interaction (reaction?) Aerosol generation from concrete-corium interaction	N/A	N/A	N/A	н	н	P
865	(reaction?)	N/A	N/A	N/A	н	н	P
866	and concrete ingredients Reaction (including generation of hydrogen and reaction	N/A	N/A	N/A	н	н	Р
867	heat) between corium ingredients and water (steam)	N/A	N/A	N/A	н	н	U
868	Corium flow / spread in drywell	N/A	N/A	N/A	н	L	Р
869	Outflow of corium particle with water flow	N/A	N/A	N/A	н	L	Р
870	Composition of corium particle	N/A	N/A	N/A	М	М	Р
871	Size / configuration of corium particle	N/A	N/A	N/A	L	М	Р
872	Aggregation / debris bed formation of corium particle	N/A	N/A	N/A	L	М	Р
873	Generation / attenuation of decay heat from corium particle	N/A	N/A	N/A	н	М	Р
874	Temperature change of corium particle bed	N/A	N/A	N/A	М	М	Р
875	Corium solidification	N/A	N/A	N/A	н	М	Р
876	Generation / attenuation of decay heat from corium	N/A	N/A	N/A	М	М	Р
877	properties of corium ingredients	N/A	N/A	N/A	н	н	Р

						i i		
878		Corium stratification	N/A	N/A	N/A	М	М	Р
879		Direct Containment Heating (DCH)	N/A	N/A	N/A	н	н	Р
880		Water flow into crust	N/A	N/A	N/A	н	М	Р
881		Bubble formation in crust	N/A	N/A	N/A	М	М	Р
882		Crack formation in crust	N/A	N/A	N/A	М	М	Р
883		Crust composition	N/A	N/A	N/A	н	М	Р
884		Generation / attenuation of decay heat from crust	N/A	N/A	N/A	н	М	Ρ
885		Crust remelting due to change in the heat transfer status to corium or water	N/A	N/A	N/A	н	н	Ρ
886		Particulate corium remelting due to change in the heat transfer status	N/A	N/A	N/A	н	н	Р
887		Oxidation reaction (including generation of hydrogen and reaction heat) between crust ingredients and water (steam)	N/A	N/A	N/A	М	М	U
888		Mixture state (fuel, structure, concrete, etc.) and physical properties of crust	N/A	N/A	N/A	М	М	Р
889		Recriticality	N/A	N/A	N/A	н	L	Р
890		Oxidation (including generation of hydrogen and reaction heat) of dowell wall by steam	L	L	L	М	н	Р
891		Oxidation (including generation of hydrogen and reaction	L	L	L	L	н	Р
892		Radiation decomposition of water	L	L	L	L	L	к
893		FP aerosolization	L	L	L	м	м	Р
894		FP deposition on drywell wall	L	L	L	М	М	Р
895		FP re-vaporization	L	L	L	М	М	Р
896		Decay heat generation from EP	-	-		M	M	P
897		EP removal from drywell internal space by spray	N/A	N/A	N/A	M	м	
898		EP particle transport by day in the drawell	1	1	1			P
800		EP particle agglomeration/fragmontation in the dravell					-	P
000		FP particle deposition on the drywell wall and internal			-		L.	, D
900		surfaces FP transport by water flow on the drywell wall and internal					L.	
901		surfaces	L .	L	L		L	P
902			L	L	L	L	L	Р
903		FP release from corium surface	N/A	N/A	N/A	M .	M .	U
904		FP reaction including iodine chemistry	L	L	L	L .	L	Р
905		Adsorption and release of gaseous FP	L	L	L	L	L	Р
906		Eutectic (Corium and metal in pedestal internals)	N/A	N/A	N/A	н	н	U
907		Droplet behavior in the drywell free space	L	L	L	L	L	Р
908		Condensatiion heat transfer on the drywell wall	L	L	L	н	L	Р
909		wall and internal surfaces	L	L	L	L	L	Р
910		Seasalt intake to corium	N/A	N/A	N/A	L	L	U
911		Seasalt impact for corium thermodynamic properties	N/A	N/A	N/A	L	L	U
912		lives)	L	L	L	L	L	U
913		Salt effects on heat transfer	L	L	L	L	L	U
914		Salt remelting from flood	L	L	L	L	L	U
915		Influence on Heat Transfer by Seasalt Concentration Change	L	L	L	L	L	Р
916		Influence on Instrumentation and Measurements by Seasalt Concentration Change	L	L	L	L	L	U
917		Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
918		Boron corrosion of drywell internal structure	L	L	L	L	L	U
919		Boron effects on heat transfer	L	L	L	L	L	U
920		Boron remelting from flood	L	L	L	L	L	U
921		Heat release from drywell wall	L	L	L	н	L	Ρ
922		Steam condensation by PCV spray	L	L	L	н	н	Р
923	Drywell Head	Heat transfer between D/W head inner wall and gas	L	L	L	н	н	к
924		Heat transfer between D/W head inner wall and water	L	L	L	н	М	к
925		Gas stratification in D/W head internal space	L	L	L	н	н	к
926		Gas composition in D/W head internal space	L	L	L	М	н	к
927		Steam condensation in D/W head	L	L	L	н	н	к
928		Gas flow in D/W head	L	L	L	н	н	к
929		Pressure change in D/W head internal space	L	L	L	н	н	к
930		Temperature change in D/W head internal space	L	L	L	н	н	к

931		Thermal conduction / Temperature change of D/W head	L	L	L	н	н	к
932		Deformation / failure of drywell head by thermal stress	L	L	L	н	н	Р
933		Seal failure of D/W head flange	L	L	L	н	н	к
934		Gas flow from D/W head flange	L	L	L	н	н	к
935		Pressure loss of bulk head plate in head (including air duct)	L	L	L	м	н	Р
936		Gas flow through air conditioner duct	L	L	L	М	м	Р
937		Local gas flow and turbulence	L	L	L	L	L	Р
938		Jet/plume gas interaction and entrainment effects	L	L	L	L	L	Р
939		Droplet behavior in the drywell head free space	L	L	L	L	L	Р
940		Condensatiion heat transfer on the drywell head wall	L	L	L	L	L	Р
941		Interaction between gas and water film flow on the drywell	L	L	L	L	L	Р
942		read wall FP attachment	N/A	М	м	н	н	к
943		FP reevaporation	N/A	L	L	м	н	к
944		Generation / attenuation of EP decay heat	N/A	L	L	м	н	к
945		EP particle transport by gas in the drywell head	L	L		L	L	P
946		EP particle and operation/fragmentation in the drywell head		-	-	-	_	P
947		FP particle deposition on the drywell head wall			-		-	P
948		FP transport by water flow on the drawell head wall		-	-	-	-	P
040		EP re-ontrainment					-	P
050		ED occumulation at lookage path	M	-	L .	L U	L U	, 11
951		EP reaction including inding chemistry	101					P
052		Thermal stratification		-	-	-	L.	P
052		Direct Containment Heating (DCH)	L	L N/A		L U	L U	r D
955		Influence on Instrumentation and Measurements by Seasalt	N/A	N/A	IN/A	-		- F
954		Concentration Change	L .		L .		L .	0
955	Drywell	Seasalt impact for FP reaction and composition	L	L	L	L	L	P
956	vent line and	Deformation / failure of pipe line due to thermal stress	L	L	L	н	н	P
957	downco mer to	Flow resistance	L	L	L	M	L	К
958	Wetwell	Heat transfer between vent pipe and water	L	L	L	L	L	К
959		Heat transfer between vent pipe and gas	L	L	L	L	L	К
960		Pressure change in vent line	L	L	L	М	M	К
961		Gas temperature change in vent line	L	L	L	н	L	К
962		Water temperature change in vent line	L	L	L	L	L	К
963		Temperature change of vent pipe	L	L	L	L	L	К
964		Gas flow in vent line	L	L	L	М	L	К
965		Local gas flow and turbulence	L	L	L	L	L	Р
966		Water flow in vent line	L	L	L	L	L	К
967		Gas composition change in vent line	L	L	L	М	н	К
968		Corium particle entrainment by gas / water	N/A	N/A	N/A	L	L	Р
969		Heat transfer between entrainment corium particle and vent pipe	N/A	N/A	N/A	L	L	Ρ
970		Heat transfer between entrainment corium particle and water	N/A	N/A	N/A	L	L	Р
971		Droplet behavior in the drywell vent line free space	L	L	L	L	L	Р
972		Condensation heat transfer on the drywell vent line inner surface	L	L	L	L	L	Р
973		FP particle transport by gas in the drywell vent line and downcomer	L	L	L	L	L	Р
974		FP particle agglomeration/fragmentation in the drywell vent line	L	L	L	L	L	Р
975		FP particle deposition on the drywell vent line	L	L	L	L	L	Р
976		FP deposition on vent line	L	L	L	М	М	Р
977		FP re-vaporization	L	L	L	М	М	Р
978		Decay heat generation from FP	L	L	L	М	М	Ρ
979		FP transport by water flow on the drywell vent line and downcomer	L	L	L	L	L	Р
980		FP re-entrainment	L	L	L	L	L	Ρ
981		FP reaction including iodine chemistry	L	L	L	L	L	Р
982		Local water flow in the drywell vent line and downcomer	L	L	L	L	L	Ρ
983		Direct Containment Heating (DCH)	N/A	N/A	N/A	н	н	Ρ

984			Change of failure crack area on bellows	L	L	L	н	н	Р
985			Water leak from failure crack on bellows	L	L	L	н	L	Р
986			Gas leak from failure crack on bellows	L	L	L	н	н	Р
987			Corrosion of piping by seasalt (including marine lives)	L	L	L	L	L	U
988			Water level change in Drywell/Wetwell vantilation line	L	L	L	н	М	U
989			Salt effects on heat transfer	L	L	L	L	L	U
990			Salt remelting from flood	L	L	L	L	L	U
991			Influence on Heat Transfer by Seasalt Concentration	L	L	L	L	L	Р
992			Change Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
993			Boron corrosion of vent pipe	L	L	L	L	L	U
994			Boron effects on heat transfer		1				U
995			Boron remelting from flood	_	_				-
000		Wetwell		-			-		0
996			Deformation / failure of wetwell by thermal stress	L	L	L			P
997			Pressure change in wetweil	L .	L	L .	н	н	ĸ
998				L	L	L	M	M	ĸ
999			Temperature change in wetwell structure	L	L	L	М	н	к
1000			Gas composition change in wetwell	L	L	L	М	н	К
1001			Corium particle entrainment by gas / water	N/A	N/A	N/A	М	М	Р
1002			Corium particle waftage	N/A	N/A	N/A	М	М	Р
1003			Corium particle deposition / accumulation	N/A	N/A	N/A	М	М	Р
1004			Heat transfer between pool water in wetwell and corium particle	N/A	N/A	N/A	М	М	Р
1005			Gas ejection	L	L	L	L	н	к
1006			Steam condensation (with/without non-condensable gases)	L	L	L	н	н	К
1007			Temperature stratification (three-dimensional temperature distribution)	L	L	L	н	н	к
1008			Stratification of gas composition	L	L	L	L	н	к
1009			Dynamic load on wetwell wall (with/without non-condensable gases)	L	L	L	М	L	к
1010			Scrubbing	N/A	L	L	М	М	Р
1011			Gas flow at vacuum breaker valve	L	L	L	н	н	к
1012			Local gas flow and turbulence	L	L	L	L	L	Р
1013			Water level change	L	L	L	н	н	к
1014			Droplet behavior in the wetwell above water level	L	L	L	L	L	Р
1015			Condensation heat transfer on the wetwell wall above water	L	L	L	L	L	Р
1016			Interaction between gas and water film flow on the wetwell	L	L	L	L	L	Р
1017			FP particle transport by gas in the wetwell	L	L	L	L	L	Р
1018			EP particle applomeration/fragmentation in the wetwell	L		L	L	L	Р
1019			FP particle deposition on the wetwell wall above water level	L					P
1020			FP transport by water flow on the wetwell wall above water	_	-				P
1021			wall	-	-	-	-	-	P
1021			EP reaction including inding chemistry	-					P
1022			Correspondence of waterall by accept (including marine lives)	-		-	-	-	, r
1023			Adversting and elegen of approximation FD	L	L.	L		L	0
1024			Adsorption and release of gaseous FP	L	L	L	L .	L	Р
1025			Salt remeiting from flood	L	L	L	L	L	U
1026			Change	L	L	L	L	L	Р
1027			by seawater	L	L	L	L	L	U
1028			Concentration Change	L	L	L	L	L	U
1029			Seasalt impact for FP reaction and composition	L	L	L	L	L	Р
1030			Boron corrosion of wetwell wall	L	L	L	L	L	U
1031			Boron effects on heat transfer	L	L	L	L	L	Р
1032			Boron remelting from flood	L	L	L	L	L	U
1033			Heat release from wetwell wall to torus room	L	L	L	н	М	к
1034			Gas leak from wetwell (vacuum breaker)	N/A	N/A	N/A	н	н	Р
1035			Water leak from wetwell (vacuum breaker)	N/A	N/A	N/A	н	н	Р
1036	React or	Isolatio n	Heat transfer between steam and inner wall of IC heat transfer tube	м	L	L	L	L	к

1037	buildi ng	Conden ser	Heat transfer between condensate and inner wall of IC heat transfer tube	L	L	L	L	L	к
1038	-		Heat transfer between pool water and outer wall of IC heat transfer tube	М	L	L	L	L	к
1039			Heat transfer between air and IC heat transfer tube in case of low pool water level	М	L	L	L	L	Р
1040			Fouling factor of heat transfer tube (inner/outer surface)	М	L	L	L	L	к
1041			Degradation of condensation heat transfer coefficient due to non-condensable gas (Hydrogen, Noble gas)	L	н	L	L	L	к
1042			Volatile FP attachment into IC heat transfer tube	N/A	N/A	L	L	L	Р
1043			Volatile FP reevaporation from IC heat transfer tube	N/A	N/A	L	L	L	Р
1044			Heat generation of volatile FP attached inside IC heat	N/A	N/A	L	L	L	Р
1045			Pressure change(pressure loss) along IC system	М	L	L	N/A	N/A	Р
1046			Pressure of IC heat transfer tube	М	L	L	N/A	N/A	к
1047			Water level in IC tank (shell side)	М	L	L	N/A	N/A	к
1048			Gas leak inside PCV boundary	М	М	М	М	М	Р
1049			Water leak inside PCV boundary	М	М	М	М	М	Р
1050			Gas leak outside PCV boundary	L	н	н	N/A	М	Р
1051			Water leak outside PCV boundary	L	н	н	N/A	М	Р
1052		R/B	Heat transfer between gas/water and walls in R/B	L	L	L	L	М	Р
1053		tments	Heat transfer between gas/water and pipes in R/B	L	L	L	L	м	Р
1054			compartments Heat transfer between gas/water and equipment in R/B		-			M	P
1055			compartments	-	-	-	-	м	
1055			Gas/water leak through the hatch on top of the wetwell to	L	L	L	L	M	P
1056			the torus room	N/A	N/A	N/A	N/A	M	Р
1057			Gas/water leak through the bellows hole to torus room PCV ventilation piping sheet degradation by halogen	N/A	N/A	N/A	N/A	М	Р
1058			compound chemical reaction	N/A	N/A	N/A	N/A	н	Р
1059			etc) to R/b compartments	N/A	N/A	N/A	N/A	М	Р
1060			etc) to R/B compartments	N/A	N/A	N/A	N/A	М	Р
1061			Gas/water leak from valves on RPV injection lines (FW, CS, HPCI, LPCI etc) to R/B compartments	N/A	N/A	N/A	N/A	М	Ρ
1062			Gas/water leak from flanges in RPV injection lines (FW, CS, HPCI, LPCI etc) to R/B compartments	N/A	N/A	N/A	N/A	М	Р
1063			Gas/water leak from valves on PCV cooling system piping (sprays and local cooling) to R/B compartments	N/A	N/A	N/A	N/A	М	Ρ
1064			Gas/water leak from flanges in PCV cooling system piping (sprays and local cooling) to R/B compartments	N/A	N/A	N/A	N/A	М	Р
1065			Gas leak from valves on gas system piping (inert gas injection, ECS etc) to R/B compartments	N/A	N/A	N/A	N/A	М	Р
1066			Gas leak from flanges in gas system piping (inert gas injection FCS etc.) to R/R compartments	N/A	N/A	N/A	N/A	М	Р
1067			Gas/water leak from valves on pedestal sump piping to R/B	N/A	N/A	N/A	N/A	н	Р
1068			Gas/water leak from flanges in pedestal sump piping to R/B	N/A	N/A	N/A	N/A	н	Р
1069			Gas/water leak from valves on CRD system piping to R/B	N/A	N/A	N/A	N/A	м	Р
1070			Gas/water leak from flanges in CRD system piping to R/B	N/A	N/A	N/A	N/A	м	Р
1071			compartments Gas/water leak from valves on instrumentation lines to R/B	N/A	N/A	N/A	N/A	н	P
1072			compartments Gas/water leak from flanges in instrumentation lines to R/B	N/A	N/A	N/A	N/A		
1072			compartments Gas/water leak from valves on PCV other utility system	N/A	IN/A	N/A	IN/A		г
1073			piping to R/B compartments Gas/water leak from flanges in PCV other utility system	N/A	N/A	N/A	N/A	M	P
1074			piping to R/B compartments	N/A	N/A	N/A	N/A	M	P
1075			Gas/water leak through PCV piping penetration	N/A	N/A	N/A	N/A	М	Р
1076			Gas/water leak from seal of electric cable penetration	N/A	N/A	N/A	N/A	н	Р
1077			Gas/water leak through PCV equipment/personnel hatch	N/A	N/A	N/A	N/A	н	Р
1078			Rupture disk break in PCV ventilation line	N/A	N/A	N/A	N/A	М	К
1079			Gas/water leak through PCV ventilation lines	N/A	N/A	N/A	N/A	М	Ρ
1080			Gas/water flow through PCV ventilation line to environment	N/A	N/A	N/A	N/A	Μ	Р
1081			Pressure change in R/B compartments	L	L	L	L	М	Р
1082			Pressure change in R/B piping and air stack	L	L	L	L	М	Ρ
1083			Successful operation of PCV ventilation	N/A	N/A	N/A	L	М	к
1084			Gas reflux flow through PCV ventilation line and stack to another unit	N/A	N/A	N/A	N/A	н	Р
1085			Gas reflux flow through PCV ventilation line to SGTS line	N/A	N/A	N/A	N/A	н	Р
1086			Gas reflux flow through PCV ventilation line to R/B ventilation ducts	N/A	N/A	N/A	N/A	н	Р
1087			Chimney effect at the elevator	L	L	L	L	М	к
1088			Chimney effect at the stairways	L	L	L	L	М	к
1089			Chimney effect at R/B air conditioner/ventilation ducts	L	L	L	L	М	к
	•		<u>.</u>						

1090		Filtration characteristics such as efficiency and pressure loss at SGTS system	N/A	N/A	N/A	N/A	L	Р
1091		Gas mixing and composition fraction change in R/B	N/A	N/A	N/A	N/A	н	Р
1092		compartments Gas composition stratification in R/B compartments	N/A	N/A	N/A	N/A	м	Р
1093		Hydrogen accumulation at locally elevated piping (e.g. inverted U-shaped piping)	N/A	N/A	N/A	N/A	н	Ρ
1094		Thermal stratification at R/B compartments	N/A	N/A	N/A	N/A	М	Р
1095		Gas mixture thermodynimic properties change in R/B compartments	N/A	N/A	N/A	N/A	L	Р
1096		Changes in gas mixing and concentration for each	N/A	N/A	N/A	N/A	н	Р
1097		Gas mixture thermodynimic properties change in ventilation	N/A	N/A	N/A	N/A	L	Р
1098		Oxidation of metal component in R/B compartments with	N/A	N/A	N/A	N/A	н	Р
1099		Steam condensation in R/B compartment structures	N/A	N/A	N/A	N/A	L	Р
1100		Ignition event for hydrogen combustion	N/A	N/A	N/A	N/A	М	Р
1101		Catalytic effect by metal components in R/B compartments	N/A	N/A	N/A	N/A	М	Р
1102		Hydrogen flame propagation regime	N/A	N/A	N/A	N/A	н	Р
1103		Hydrogen combustion transition to detonation	N/A	N/A	N/A	N/A	н	Р
1104		Pressure load to the structures in R/B	N/A	N/A	N/A	N/A	н	Р
1105		Local gas flow and turbulence in the R/B compartments	L	L	L	L	М	Р
1106		Droplet behavior in R/B compartment free space	N/A	N/A	N/A	N/A	М	Р
1107		Interaction between gas and water film flow on R/B	N/A	N/A	N/A	N/A	М	Р
1108		FP particle transport by gas flow in R/B compartments	N/A	N/A	N/A	N/A	L	Р
1109		FP deposition on R/B compartment structures	N/A	N/A	N/A	N/A	L	Р
1110		FP re-entrainment from R/B compartment structures	N/A	N/A	N/A	N/A	L	Р
1111		FP re-vaporization from R/B compartment structures	N/A	N/A	N/A	N/A	L	Р
1112		FP particle agglomeration/fragmentation in R/B	N/A	N/A	N/A	N/A	L	Р
1113		FP transport by water flow on R/B compartment structures	N/A	N/A	N/A	N/A	L	Р
1114		Seasalt impact for FP reaction and composition	N/A	N/A	N/A	N/A	L	Р
1115		FP accumulation at leakage paths	N/A	N/A	N/A	N/A	L	Р
1116		FP reaction including iodine chemistry	N/A	N/A	N/A	N/A	L	Р
1117	SGTS	Gas leak through SGTS line valves or seals to R/B	N/A	N/A	N/A	N/A	М	Р
1118		compartments Ventilation ratio by SGTS	N/A	N/A	N/A	N/A	М	к
1119	Operati	Heat transfer between gas/water and walls in the operation	L	L	L	L	М	Р
1120	on Floor	Heat transfer between gas/water and pipes in the operation	L	L	L	L	М	Р
1121		Heat transfer between gas/water and equipment in the	L	L	L	L	М	Р
1122		Pressure change in the operation floor	L	L	L	L	М	Р
1123		Gas inflow from the stairways	L	L	L	L	М	Р
1124		Gas inflow from the elevator	L	L	L	L	М	Р
1125		Gas inflow from operation floor air conditioner/ventilation	L	L	L	L	М	Р
1126		Gas inflow from the drywell head flange	N/A	N/A	N/A	N/A	н	Р
1127		Gas mixing and composition fraction change in the	N/A	N/A	N/A	N/A	н	Р
1128		Gas composition stratification in the operation floor	N/A	N/A	N/A	N/A	м	Р
1129		Gas flow in the operation floor	L	L	L	L	М	Р
1130		Oxidation of metal component in the operation floor with	N/A	N/A	N/A	N/A	L	Р
1131		Steam condensation on the operation floor structures	N/A	N/A	N/A	N/A	L	Р
1132		Local gas flow and turbulence in the operation floor	L	L	L	L	L	Р
1133		Droplet behavior in operation floor free space	N/A	N/A	N/A	N/A	L	Р
1134		Interaction between gas and water film flow on the operation	N/A	N/A	N/A	N/A	L	Р
1135		FP particle transport by gas flow in the operation floor	N/A	N/A	N/A	N/A	L	Р
1136		FP deposition on the operation floor structures	N/A	N/A	N/A	N/A	L	Р
1137		FP re-entrainment from operation floor structures	N/A	N/A	N/A	N/A	L	Р
1138		FP re-vaporization from operation floor structures	N/A	N/A	N/A	N/A	L	Р
1139		FP particle agglomeration/fragmentation in the operation	N/A	N/A	N/A	N/A	L	Р
1140		FP trasnport by water flow on the operation floor	N/A	N/A	N/A	N/A	L	Р
1141		Seasalt impact for FP reaction and composition	N/A	N/A	N/A	N/A	L	Р

1142	Г		FP accumulation at leakage paths	N/A	N/A	N/A	N/A	L	Р
1143			FP reaction including iodine chemistry	N/A	N/A	N/A	N/A	L	Р
1144			Absorption and release of gaseous FP from the spent fuel pool	N/A	N/A	N/A	N/A	L	Р
1145			Ignition event for hydrogen combustion	N/A	N/A	N/A	N/A	М	Р
1146			Catalytic effect by metal components in the operation floor	N/A	N/A	N/A	N/A	М	Р
1147			Hydrogen flame propagation regime	N/A	N/A	N/A	N/A	н	Ρ
1148			Hydrogen combustion transition to detonation	N/A	N/A	N/A	N/A	н	Р
1149	Γ	Blowout Panel	Opening of the blow-out panel	N/A	N/A	N/A	N/A	н	Р
1150			Design pressure of the blowout panel	N/A	N/A	N/A	N/A	М	к
1151			Opening area of the blowout panel	N/A	N/A	N/A	N/A	н	к
1152			Installation location of blowout panel	N/A	N/A	N/A	N/A	М	к
1153	Γ	Spent Fuel	Heat transfer between gas/water and the spent fuel pool	L	L	L	L	М	Р
1154		Pool	Steam condensation on the spent fuel pool interface	N/A	N/A	N/A	N/A	L	Р
1155			Decay heat from spent fuel in the pool	L	L	L	L	L	Р
1156			Spent fuel pool water radiolysis	L	L	L	L	L	Р
1157			Temperature change in the spent fuel pool	L	L	L	L	L	Р
1158			Metal - water reaction of spent fuel and pool water (hydrogen generation)	N/A	N/A	N/A	N/A	М	Р
1159		Equipm ent Pool	Steam condensation at pool surface	N/A	N/A	N/A	N/A	L	Р

					Early phase	Middle	Late phase	
No	System	Subsystem	Major phenomenon	Phenomenon	Heat un/	priase		SoK
110.	o yocom	/Component		/ Related phenomena, other specific features	Melting/	PCV	Release to	
					Relocation	Deposition	environment	t .
		-	1. In-vessel Release					
2101	RPV	Core	(1) Radionuclides	Radionuclides generating	Middle (2,115)	Low (1.115)	Low (1.102)	Р
			behaviour before	- Irradiation history	(2.113)	(1.113)	(1.192)	
			cladding damage					
				 Neutron spectrum 				
				Radionuclides generating rate has relatively large error due				
				assembly.				
				There is area to develop the measurement of radionuclides	5			
				inventory.				
2102	RPV	Core		FP gas release	Middle	Low	Low	Р
				Related parameters	(2.115)	(1.038)	(1.038)	
				- Pellet microstructure				
				 Irradiation history (Temperature history) 				
				 Pellet characteristics 				
				- Atmosphere in the fuel rod				
				- Fuel Temperature				
				 Gas partial pressure, Gas equilibrium partial pressure, the molar density of fuel, and the fuel 				
				volume				
				- Pressure				
				Additional FP gas release is small at the temperature in				
				recovering the clad irradiation defect, because the				
				temperature gradient in the pellet is low at the accident. Thus the internal pressure of fuel rod will affect the timing				
				of the cladding damage.				
				The knowledge of the FP gas release was obtained during				
				steady state condition, but the knowledge about influence				
				of the release due to the crushing pellets is not enough.				
				Less knowledge about FP release from high burnup fuel				
				and MOX fuel				
2103	RPV	Core		FP movement before the clad damage	Middle	Low	Low	К
				Related parameters	(2.154)	(0.846)	(0.846)	
				See also 2102 The amount of EB that mayo to the can before the				
				accident affect the release of at clad rupture. This is				
				similar to the FP gas release.				
				The knowledge about volatile FP's behavior during				
				steady-state operation is relatively abundant.				
				operation, the release ratio of Cs exceed 20%.				
2104	RPV	Core		Pellet-clad bonding	Middle	Low	Low	К
				Related parameters	(2.038)	(0.846)	(0.846)	
				- Irradiation history				
				- Pellet/Clad characteristic (binding force)				
				(U.Zr)O2 affects the liquidus line of clad	1			
				The knowledge about a bonding generating condition is				
				summarized.				
				There is little knowledge about bonding of the MOX. But				
				the bonding does not occure in the case of Fukushima to				
2105	RPV	Core	ł	Pellet-clad contact	Middle	Low	Low	к
				The fuel melting behavior is affected by the pellet-clad	(2.038)	(0.846)	(0.846)	
				contacting.				
				Lowering of the fuel liquidus-solidus line by eutectic				
2106	RPV	Core	(2) Radionuclides	Pellet form change and radionuclides release at the time of the clad	High	Low	Low	Р
		- 2. 5	,					1

表 2-6 ソースターム PIRT

i i	1	1 1		1	/- · ·	k= · ·	/- · ·	
			behavior from clad	rupture	Engineering	Engineering	Engineering	
			damage to clad		Judgement)	Judgement)	Judgement)	
			melting					
				Related parameters				
				- The characteristic of the clad creening				
				- Temperature history during the assident				
				- Temperature history during the accident				
				 Internal pressure of fuel rod 				
				- the state of fuel and radionuclides before the clad				
				rupture				
				- Temperature history				
				- Atmosphere				
				See also 2102				
				The phenomenon of the crushing pellets, with the				
				weakened binding force of the pellets at high burnup is				
				known when the nellet temperature is higher than the				
				known when the penet temperature is higher than the				
				temperature experienced during irradiation. It may crush				
				finely for the high burnup organization (Rim organization				
				and Pu spot).				
				When a pellet crushes, a lot of radionuclides are released				
				and affect the radionuclides diffusion. However, it is not				
				clear the behavior before clad rupture.				
				Crushing pellets due to the rapid decrease of pellet stress				
				with the clad rupture affects the later behaviour (the				
1	1			increasing of radionuclides release, the radiocuclides				
1	1			movement inside and outside fuel)				
1	1			The old runture courses the release of redistruction-				
				The clad rupture causes the release of radionuclides				
				accumulated in the gap, the foam change with clad				
				crushing, and the additional release by the pellet oxidation				
				with the steam.				
				The axial distrubution of the oxygen potential in fuel rod				
				changes /The eled is empirited by bydrages away from				
				changes. (The clau is embrillied by hydrogen away from				
				the the ruptured position.)				
2107	RPV	Core	(3) Radionuclides	Radionuclides release after pellet is exposed to the atmosphere in	High	Middle	Low	U
			behavior in the state	the core by clad melting	(2.417)	(1.962)	(1.423)	
			that the pellet shap	Related parameters				
			stability was kept	- Atmosphere (existence of the steam)				
			after clad melting	Autosphere (existence of the steam)				
			arter clau merting					
				 Atmosphere (existence of hydrogen produced by 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pine damage) 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Section surface of find (including ourface) 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to old melting the release is prestive to the the theorem. 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase existing the the summer startie (in the state of the summer startie) (in the state of the summer state of the				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I Te Cs.Sr.Ba.Pu.Ru) that have been observed in the 				
				 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I,Te,Cs,Sr,Ba,Pu,Ru) that have been observed in the Fukushima accident 				
0100		0		 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements ((.T.e., C.s., Sr, Ba, Pu, Ru)) that have been observed in the Fukushima accident. 			A4: J II.	
2108	8 RPV	Core	(4) Radionuclides	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I,Te,Cs,Sr,Ba,Pu,Ru) that have been observed in the Fukushima accident. Radionuclides release from molten fuel 	High	High	Middle	U
2108	8 RPV	Core	(4) Radionuclides behavior after the	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I.Te,Cs,Sr;Ba,Pu,Ru) that have been observed in the Fukushima accident. Readionuclides release from molten fuel Related parameters 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	8 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I, Te, Cs, Sr, Ba, Pu, Ru) that have been observed in the Fukushima accident. Related parameters 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	3 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I,Te,Os,Sr,Ba,Pu,Ru) that have been observed in the Fukushima accident. Radionuclides release from molten fuel Related parameters Temperature 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	8 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I,Te,Cs,Sr,Ba,Pu,Ru) that have been observed in the Fukushima accident. Related parameters Temperature 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	8 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I.T.e.C.s.Sr.B.A.P.U.Ru) that have been observed in the Fukushima accident. Radionuclides release from molten fuel Related parameters Temperature 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	8 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I, Te, Cs, Sr, Ba, Pu, Ru) that have been observed in the Fukushima accident. Radionuclides release from molten fuel Related parameters Temperature Composition Atmosphere 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	3 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I.Te, Cs, Sr, Ba, Pu, Ru) that have been observed in the Fukushima accident. Redionuclides release from molten fuel Related parameters Temperature Composition Atmosphere 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	8 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I,Te,Cs,Sr,Ba,Pu,Ru) that have been observed in the Fukushima accident. Radionuclides release and evaporation by melting Radionuclides release and evaporation by melting Radionuclides release rate is increased when fuel is 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	8 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements ((I.Te, Cs, Sr; BA, Pu, Ru) that have been observed in the Fukushima accident. Radionuclides release and evaporation by melting Radionuclides release and evaporation by melting Radionuclides release rate is increased when fuel is liquefied.	High (2.615)	High (2.462)	Middle (1.692)	U
2108	3 RPV	Core	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements (I,Te,Cs,Sr,Ba,Pu,Ru) that have been observed in the Fukushima accident. Radionuclides release and evaporation by melting Radionuclides release from moten fuel 	High (2.615)	High (2.462)	Middle (1.692)	U
2108	RPV	Core, Lower	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) 	High (2.615) Middle	High (2.462) Middle	Middle (1.692)	U
2108	8 RPV	Core, Lower plenum	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) 	High (2.615) Middle (1.750)	High (2.462) Middle (2.077)	Middle (1.692) Middle (1.692)	U
2108	8 RPV	Core plenum	(4) Radionuclides behavior after the fuel melting	 Atmosphere (existence of hydrogen produced by the reaction of steam and clad) Atmosphere (internal leakage of the nitrogen/air by the instrumentation pipe damage) Specific surface of fuel (including surface depletion) fuel temperature Ambient pressure During the state of the pellet dropping (not melting) due to clad melting, the release is mostly due to the thermal effect (diffusion or evaporation) and the chemical reaction. When UO2 is oxidized with steam, the FP in the crystal lattice of U becomes easy to move. The release behaviour is different the oxidized fuel from reduced fuel. There is a possibility that the volatility will increase significantly in the high oxygen potential (air infiltration conditions) in specific FP (especially Ru). The radionuclide release of the elements ((I,Te,Cs,Sr,Ba,Pu,Ru) that have been observed in the Fukushima accident. Radionuclides release and evaporation by melting Radionuclides release and evaporation by melting Radionuclides release rate is increased when fuel is liquefied. Radionuclides release rom re-solidification fuel Related parameters Temperature Radionuclides release from re-solidification fuel 	High (2.615) Middle (1.750)	High (2.462) Middle (2.077)	Middle (1.692) Middle (1.692)	U

				- surface area - Nuclear fission Radionuclides release from the corium solidified above the water surface in a situation which no water is splashed in. Radionuclides release by re-heating after solidified molten debris has not been assumed so far.				
2110	RPV	Core		Radionuclides release during the reflood Related parameters - Cooling rate	Middle (1.808)	Middle (1.885)	Low (1.654)	U
				- FP dissolution to a coolant FP release due to cracking / grain refining of fuel by the				
				The CORA experiment in Germany provides the result that FP release promotes during reflood.				
2111	PD\/	Core	(5) Other behaviors	Less knowledge about the FP release during reflooding.	High	Middle	Middle	
2111	ILE V	Core	and factors which affect the radionuclides	from molten/re-solidified fuel due to the B4C control rod existence Influence on behavior of (3) and (4)	(2.423)	(2.192)	(1.692)	U
			release	Miving process of fuel and BAC affects the source term				
				This clarification is important.				
				The formation of organic iodine increases in B4C control rod.				
				Less knowledge about the chemical contribution of iodine, cesium, and tellurium, etc. which are included in the control				
				rod and the other constituents.			-	
2112	RPV	Core		Influence of the MOX (Pu concentration) It should be considered about composition of Pu	Middle (2.231)	Middle (1.769)	Low (1.385)	Р
				concentration, non-uniformity of Pu spots, and chemistry	()	((
				in the fuel rod as an influence on the behaviour of (1) to (4) .				
				If oxygen potential is high, FP is oxidized, and a release rate changes by chemical form (vapor pressure) changing.				
				The oxygen potential in MOX fuel is higher than UO2 fuel.				
2113	RPV	Core, Lower		Radionuclides release due to the re-criticality	Low	Middle	Low	U
		plenum		Related parameters	(1.500)	(1.731)	(1.423)	
				- Composition				
				- Coolant ratio				
				Radionuclides generating and release when partial or				
				It is necessary to make it clear about the re-criticality				
				during the accident.				
0114		0		Influence on behaviour of (2) to (4)	Madala	Madala	1	
2114	RPV	Core		Change of the amout of heat generation in the fuel (Decay heat) by the radionuclides release	(2.077)	(1.885)	Low (1.654)	U
				Due to each stage of the radionuclides release and the			•••••	
				changes of the heat source at each place, there is				
				influence of the temperature evaluation that is important to the release behaviour.				
				Influence on behaviour of (2) to (4). If there is a transition				
0001				in the fuel rod at (1), there is also influence on behaviour.	112.4	18.4	MP J.H.	K
2201	RPV	Vessel, Loop, Steam	z. Gas/Aerosol Behaviour in Vessel.	Related parameters	(2.583)	(2.654)	(2.231)	ĸ
		line	Loop, and Steam line	 Vapor partial pressure difference between FP and 			•	
				aerosol surface				
				 Water injection via CS Mass transfer coefficient. Sherwood number 				
				- Amount of FP saturated vapor				
				- FP vapor concentration				
				 Vaporization rate (Condensation rate) of FP vapor in the condensation plane 				
				- Diffusion coefficient of the vapor				
				- Diffusion coefficient of the FP gas				
				- Temperature				
				- vaporization of deposited criemical species - Condensation on the wall surface				
2202	RPV	Vessel,		Re-suspension	Middle	Middle	Low	К
		Loop, Steam		Related parameters	(2.136)	(2.200)	(1.500)	

1 1		line		- Velocity				
2203	RPV	Vessel.		Agglomeration	Middle	Middle	Low	К
		Loop. Steam		Related phenomena	(1.909)	(2.000)	(1.455)	
		line		 Thermal agglomeration with Brownian motion 				
				 Kinetic agglomeration by the velocity difference 				
				- Turbulent agglomeration				
				Related parameters				
				 Temperature caused by decay heat, steam 				
				leakage, water injection, and radiation to PCV				
				- Difference of the particle diameter				
				 Difference of the particle velocity 				
2204	RPV	Vessel,		Deposition by diffused migration	Middle	Middle	Low	К
		Loop, Steam		Related phenomena	(2.091)	(2.000)	(1.625)	
		line		– Stefan flow				
				- Interdiffusion				
				- Brownian motion				
				Related parameters				
				- Bulk flow of mixtured gas (Non-condensable gas				
				and water vapor)				
				- Concentration gradient of the gas mixture				
				- Mass flux of the steam condensation				
				 Temperature caused by decay heat, steam 				
				leakage, water injection, and radiation to PCV				
2205	RPV	Vessel,		Diffused deposition by convection	Middle	Middle	Middle	К
		Loop, Steam		Related phenomena	(2.091)	(2.273)	(1.792)	
		line		- Fluid state (turbulent/laminar flow)				
				 Noncondensable gas generation (high temperature) 				
				- Steam generation due to FCI				
				- Chemical reacton between gas				
				- Hydrogen Combustion				
				- Recriticality				
2206	RPV	Vessel,	ĺ	Deposition by thermophoresis	Middle	Middle	Low	Κ
		Loop, Steam		Related parameters	(2.000)	(2.091)	(1.625)	
		line		- Temperature gradient between gas and wall				
				- Thermophoretic coefficient				
2207	RPV	Vessel,		Deposition by gravitational settling	Middle	Middle	Middle	Κ
		Loop, Steam		Related parameters	(2.273)	(2.182)	(1.909)	
		line		 Density of the aerosol particles 				
				 Particles diameter 				
				 Cm(Cunningham) correction factor 				
				– Spatial volume				
				 Deposition area 				
2208	RPV	Vessel,		Inertial deposition	Middle	Middle	Middle	Κ
		Loop, Steam		Related parameters	(2.273)	(2.091)	(1.708)	
		line		– Gas velosity				
				 Stokes number 				
2209	RPV	Vessel,		Aerosol growth by hygroscopicity	Middle	Middle	Middle	Κ
		Loop, Steam			(2.125)	(1.875)	(1.727)	
		line						
2210	RPV	Lower		Scrubbing	Middle	Middle	Middle	Ρ
		Plenum		Related phenomena	(2.208)	(2.273)	(1.958)	
				 Water injection into the lower plenum retaining 				
				debris				
				There are knowledge in general under the lower				
0004				temeperature during steady state condition.				_
2301	RPV	-	3. Transport in RPV and	Leakage via instruments, penetration, etc	High (Casimonian	High (Faailaaniaa	High	Р
			PGV	Leak potential	(Engineering	(Engineering	(Engineering	
				- In-Core instrument (SRM/IRM, HP)	Juagement/	Judgement/	Judgement/	
				- Instrumentation pipe				
				- Pump seal				
				Related phenomena				
				- Inertial deposition				
				- Re-suspension by the turbulence diffusion				
				Related parameters				
				- Temperature				
				 Liquidus-solidus line of the instrumentation tube 				
				- Leakage area				
				- Pressure				

2302	RPV	-		Leakage via gasket	High	High	High	Ρ
				Leak potential	(Engineering	(Engineering	(Engineering	
				- RPV flange	Judgement)	Judgement)	Judgement)	
				– MSL gasket				
				- MSIV				
				Related phenomena				
				Related parameters				
				 Liquidus-solidus line of the RPV wall 				
				- Liquidus-solidus line of the CRD guide tube				
				See also 2301				
2303	RPV	Lower Head		Leakage by RPV damage	Low	High	High	Ρ
				Related parameters	(1.400)	(2.455)	(2.364)	
				 Liquidus-solidus line of the RPV wall 				
				 Liquidus-solidus line of the CRD guide tube 				
				See also 2301				_
2401	PCV	Pedestal	4. Ex-vessel Release	MCCI (Concrete erosion)	Low (0.100)	High (0.075)	High (0.701)	Р
				Related phenomena	(0.182)	(2.875)	(2.731)	
				- Concrete erosion				
				- Crusting				
				 Heat transfer on the boundary layer of debris 				
				- Heat transfer in the gap of concrete debris				
				 Heat transfer between the water and the debris 				
				- Spreading on the floor				
				 Chemical reaction with the corium 				
				 Generation of non-condensable gas (CO and H2) 				
				by oxidizing the metal by CO2 and H2O generated by				
				decomposed concrete				
				 Scrubbing and crust generation when there is a mode on the method and 				
				Polot on the molten pool				
				- Heat flux to the concrete Concrete density and				
				Enthalpy of eroded concrete				
				- Sensible heat of the concrete, Energy by chemical				
				reaction, and Heat generation by melting the oxides				
				- Components of the concrete				
				 Debris density distribution 				
				 Temperature distribution in the crust, Solidification 				
				temperature of the debris				
				– Gas film, Slag film				
				- Chemical reaction between the debris and the				
				- Convection and temperature distribution in the				
				debris				
				– Debris properties				
				- Vaporization				
				 Steam release from the hydroxide 				
				 CO2 release from carbonate 				
2402	PCV	Pedestal		Re-entrainment of aerosols by PCV depressurization	Low	Middle	Middle	К
				Major technical knowledge related to the migraion of	(0.333)	(2.125)	(1.833)	
2501	PCV	S/C	5 Aerosol Bebaviour in	aerosol behavior in the PCV is generally sufficient.	High	Middle	N/A	ĸ
2301	FUV	3/0	Containment	Related phenomena	(Engineering	(Engineering	IN/A (Engineering	ĸ
			oontaininont	- Inertial impaction	Judgement)	Judgement)	Judgement)	
				- Condensation				
				- Gravity settling				
				- Aerosol collection in the bubbles				
				 Brownian diffusion 				
				Related parameters				
				 Bubble rise velocity 				
				- Bubble density				
				– Bubble diameter				
				- Velocity at the discharge outlet				
				- Vapor mass flux				
				- Steam ratio in carrier gas				
				- Carrier gas pressure				
				- S/C water temperature				
L		1	1				1	

			- S/C water level				
			- Diffusion coefficient of the particles				
			 Total pressure of S/C 				
			- Steam pressure of S/C				
			– Quencher diameter				
			 Cm(Cunningham) correction factor 				
2502	PCV	S/C	Scrubbing with the vent from D/W to S/C	Low	High	High	Ρ
			Related parameters	(1.542)	(2.625)	(2.375)	
			- vapor flow				
			- S/C water level				
			- S/C water temperature				
2503	PCV	Pedestal	Scrubbing due to water injection to the pedestal floor	Low	Middle	High	Ρ
				(0.583)	(2.292)	(2.333)	
2504	PCV	D/W, S/C	Traping due to steam condensation by spray	Low	Middle	Middle	Κ
			Related phenomena	(1.273)	(2.167)	(2.208)	
			 Diffused migration 				
			 Stefan flow 				
			Related parameters				
			 Steam condensation rate 				
			 Molecular weight of steam and gas 				
			 Mol fraction of steam and gas 				
			 Mol concentration of bulk gas 				
			- Particle deposition velocity				
			- Droplet surface area				
			- Spatial volume				
2505	PCV	D/W S/C	Trapping due to collision with droplets by spray	Low	Middle	Middle	к
2000	101	<i>D</i> / II , O / O	Related phenomena	(1 273)	(1.818)	(1.875)	
				(((
			- Aerosol particle radius				
			- Spray droplet radius				
			- Reynolds number of droplet				
			- Spray volumetric flow				
			- Spray drop height				
			- Spatial volume				
			- Stokes number				
			- Peclet number				
2506	PCV	D/W	Steam condensation by drywel cooler	Low	Middle	Middle	Р
			Related parameters	(1.455)	(2.083)	(2.000)	
			 Steam condensation rate 				
			- Bulk gas density				
			 Gas phase volume 				
			Aerosol deposition model to tubes have been constructed.				
			But there are a large amount of uncertainty.				
2507	PCV	D/W	Condensation / Re-vaporization / Adsorption	Middle	High	Middle	К
			See	(1.818)	(2.455)	(2.208)	
			also				
			2201				
2508	PCV	D/W	Re-suspension	Low	Middle	Middle	К
			See also 2202	(1.455)	(2.125)	(2.083)	
2509	PCV	D/W	Agglomeration	Middle	Middle	Middle	К
			See	(1.700)	(2.100)	(2.000)	
			also				
			2203				
2510	PCV	D/W	Deposition by diffused migration	Low	Middle	Middle	К
			See	(1.500)	(1.864)	(1.727)	
			also				
			2204				
2511	PCV	D/W	Diffused deposition by convection	Middle	Middle	Middle	Κ
			See	(2.000)	(2.300)	(2.091)	
			also				
			2205				
2512	PCV	D/W	Deposition by thermophoresis	Middle	Middle	Middle	K
			See	(1.700)	(1.955)	(1.818)	
			also				
			2206				
2513	PCV	D/W	Deposition by gravitational settling	Middle	Middle	High	K

1			1	See	(1 792)	(2 273)	Engineering	-
				also	(1.752)	(2.270)	Ludgement)	÷
				2207			oudgement/	
2514	PCV	D/W	4	nertial denosition	Low	Middle	Middle	ĸ
2314	FUV	D/ W			(1.545)	(1 000)	(1 975)	
				slee	(1.040)	(1.000)	(1.070)	
				2200				
0515	DOV	D /W	4		Midala	Middle	Midalla	L V
2010	PUV	D/ W				(1.075)		
				See	(1.792)	(1.675)	(1.727)	
				also				
054.0	DOV (D AN	4	2209				
2516	PCV	D/W			Low	Middle	Low	Р
				Related parameters	(1.300)	(1./92)	(1.500)	
				- Pressure	_			
2601	PCV	-	6. Transfer out of	Leakage via instruments, penetrations, gasket, etc	Low	High	High	Р
			Containment	Leak potential	(Engineering	(Engineering	(Engineering	5
				 Top head flange 	Judgement)	Judgement)	Judgement)	1
				 TIP(Traversing Incore Probe) penetration 				
				 CRD (Control Rod Drive) hatch 				
				– S/C manhole				
				 Equipment hatch 				
				 Electric penetration 				
				- Bellows (vent. penetration)				
				- Vacuum breaker (1F1 only)				
				Related phenomena				
				- Re-europension by the turbulence diffusion				
				Describert				
				- Decay heat				
				 Radiation from RPV 				
				Related parameters				
				 Vapor temperature 				
				 Liquidus-solidus line of the organic seal material 				
				 Leakage area 				
				 PCV pressure 				
2602	PCV	S/C		Wetwell vent	Low	High	High	Р
				Related phenomena	(1.000)	(2.455)	(2.545)	
				- Inertial depositoin				
				- Scrubbing				
				- Scrubbing at the rapid de-pressurization				
				- Scrubbing at the depressurized boiling				
				- Scrubbing at the time when a large amount of hot				
				solubbiling at the time when a large amount of hot				
2602	DOV		4		Law	Link	Lliath	
2003	PUV	D/ W			(1 000)	(a eae)		F
				Related phenomena	(1.000)	(2.030)	(2.909)	
			4	- Inertial depositoin				
2604	PCV	-		Filtered Containment Venting Systems (FCVS)	Low	Low	Low	Р
			-		(0.955)	(1.455)	(1.636)	
2605	RPV,	-		Migration of radioactive material by the injection water into the	Low	Low	High	U
	PCV			reactor	(0.800)	(1.364)	(2.364)	
2701	R/B	-	7. Aerosol Behaviour in	Aerosol Behaviour in Reactor Building	Low	Low	High	K
			Reactor Building	Related phenomena	(Engineering	(Engineering	(Engineering	5
				- Condensation / Re-vaporization / Adsorption	Judgement)	Judgement)	Judgement))
				 Re-suspension 				
				 Agglomeration 	1			
				 Deposition by diffused migration 	İ			
				- Diffused deposition by convection				
				- Deposition by thermophoresis				
				- Deposition by gravitational sattling				
				- Inertial denosition				
				- Aerosol growth by hygroscopicity	-			
0700	D / D		4		ι.			
2702	к∕В	-		verosol deposition on the narrow part (clearance of the shield	Low		Middle	U
0.00	DOV	D 444 D 12			(1.292)	(1.625)	(2.292)	
2801	PCV	D/W, S/C	8. Iodine chemistry	Generation of acidic substances by radiolysis	Low	Middle	High	Р
				Related phenomena	(1.409)	(2.182)	Engineering	1
				 Production of nitric acid from the nitrogen by 			Judgement)	1
1				radiolysis				
								_

			coating material of the electric wire by radiolysis				
			Related parameters				
			- Nitrogen mass in the atmosphere				
			- Deep rate in the atmosphere				
			- Gable insulator mass				
			- Dose rate of the cable insulator				
802	PCV	S/C	Hydrolysis	Low	Middle	High	Р
				(1.409)	(2.300)	(Engineering	
						Judgement)	
803	PCV	S/C	Re-volatilization of iodine by acidification pH decrease	Middle	Middle	High	Р
			Related parameters	(1.708)	(Engineering	(2.545)	
			- Hydrogen-ion concentration		Judgement)		
			- Jonio accord				
004	DOV	S /O		Mistalla	Ministra	Litada	Б
804	PCV	5/0				rign	٢
				(1.708)	Engineering	(2.545)	
			reaction		Judgement)		
			in water				
			pool				
			Related parameters				
			 The molarity of the active chemical species 				
			- Gas pressure in the atmospheree				
			– Water density				
			- Malarity of the indine species				
			- Reaction rate constant (Enword / Persona)				
			- Reaction rate constant (Forward/ Reverse)				
	5.014	D (111 D (D	- Source by radiolysis				
805	PCV	D/W, S/C	Decomposition reaction of iodine in the atmosphere	Low	Middle	High	Р
			Related phenomena	(1.542)	(2.125)	(2.417)	
			 Thermal decomposition reaction 				
			 Radiolysis reaction 				
			Related parameters				
			- Hydrogen concentration				
			- Ambient temperature				
			- Dose rate atmosphere				
			 Oxygen concentration 				
			 Water vapor concentration 				
806	PCV	S/C	Transfer between gas phase and water pool	Middle	Middle	High	Ρ
			Mass transfer coefficient between atmosphere and	(2.091)	(Engineering	(2.833)	
			water pool		Judgement)		
			Surface area of water pool				
			Atmospheree volume				
			Malarity in the atmospheres and water peak				
007	DOV			1	Mi dulla	1 Rate	D
.00/	PUV	D/ W, S/C				(0.200)	2
			Related parameters	(1.500)	(2.125)	(2.333)	
			- Molarity of I and I2				
			 Ambient temperature 				
			- Partial pressure of I and I2				
			 Equilibrium constant 				
808	PCV	D/W, S/C	Wall deposition of iodine in the atmosphere	Low	Middle	High	Р
			Related parameters	(1.625)	(Engineering	(2.545)	
			-12 concentration in the atmosphere	(Judgement)	(
			- the amount of 12 deposition per unit area				
			 Adsorption rate 				
			 Desorption rate 				
809	PCV	D/W, S/C	Wall adsorption and desorption of iodine by chemical adsorption	Middle	Middle	High	Р
			process	(1.792)	(Engineering	(2.545)	
			Related phenomena		Judgement)		
			 Adsorption/Desorption in the atmosphere 				
			(Chemical adsorption to the paint with CH3I and I2				
			- Adsorption/Desorption in the water pool				
			(Chemical adcorntion to the paint with I- 12 and				
			CH3I)				
010	DOM	_		1	Minin	-استاليا	P
010	F6V	-	Enect of impurities in the water pool				F
	D.C.L.			(1.000)	(1.082)	(2.400)	
811	PCV	-	lodine chemistry under high water temperature conditions	Middle	Middle	High	Р
				(1.818)	(2.208)	(2.545)	
812	PCV	-	Effects of seawater	Low	Low	High	U
				(1.100)	(1.591)	(2.400)	

2813	PCV	-		lodine release from R/B contaminated water	N/A	High	High	U
					(Engineering	(Engineering	(Engineering	
					Judgement)	Judgement)	Judgement)	
			9. Chemical form	There are still large uncertainties about the chemical form				
			(Iodine, Cesium)	of iodine.				1
				Large amounts of gaseous cesium that can not be				
				explained by conventional knowledge was observed in				
				Fukushima accident.				
2901	RPV	Core, Lower		Re-evaporation of I2 by the decomposition of CsI	Middle	Middle	High	Κ
		Plenum		Related phenomena	(1.667)	(2.208)	(Engineering	
				 Decomposition of CsI with boric acid 			Judgement)	
				- I2 generation due to the oxidation of CsI by an air				
				atmosphere				
2902	PCV	-		Effects of seawater	Low	Low	High	U
					(1.100)	(1.591)	(2.400)	
2903	RPV,	-		A generation ratio for the inorganic iodine of the organic iodine	Low	Middle	High	Ρ
	PCV				(1.500)	(2.167)	(2.375)	

3. SAMPSON-SWG

3.1 はじめに

SAMPSON-SWG では、我が国で開発されたシビアアクシデント解析コード SAMPSON を(財) エネルギー総合工学研究所(以下,エネ総工研)より貸与いただき,福島第一原子力発電 所1~3号機の事故進展やシビアアクシデントに関する既往実験等の解析を通じて,SAMPSON コードの課題を摘出することを目的とした。

3.2 SAMPSON コードの開発経緯と概要

SAMPSON-SWG における検討状況を述べる前に,1993 年度より10 年計画でコードが開発された経緯とコードの概要をまとめておく。詳しくは文献[3-1][3-2]を参照されたい。

原子カプラントにおいてシビアアクシデントを想定した場合,通常運転時から事故の終 息に至る間に,熱流動挙動や化学挙動に加えて核分裂生成物の挙動等が複雑に錯綜し,か つ相互に影響し合いながら現れるため,事故時の一連の挙動を試験のみによって解明する のは極めて困難である。したがって,試験では,事故時の特定の局面に着目し,その断面 における詳細な現象の解明を目指しているものがほとんどである。そのため,事故時にお けるプラントの全体的な挙動の把握は解析コードに頼らざるを得ない。

主なシビアアクシデント解析コードのうち, MAAP, MELCOR, THALES などのいわゆる Lumped-Parameter コードは,主として経験式を採用し,大規模試験に基づいて経験定数や チューニング・パラメータを決定するという方法をとっている。計算負荷が小さいことが 最大の特長であり,シビアアクシデント対策の有効性評価,レベル 2 PRA のソースターム 解析などを感度解析も含めて系統的に実施することが可能である。

これに対して,詳細解析のためのメカニスティックコードといわれるものとして,米国 原子力規制委員会(USNRC)は,原子炉容器内の事象を対象とした RELAP/SCDAP や格納容器内 の事象のみを対象とした CONTAIN 等を開発した。しかし,これらのメカニスティックコー ドにおいても,現象そのものの複雑さから,あるいは現象の理解が不十分なために,一部 簡略化したモデル (例えば,RELAP5/SCDAP では溶融炉心の移動挙動,CONTAIN では水素の 燃焼挙動等で)を採用している。また,水蒸気爆発現象については,これらのコードではモ デル化されていない。さらに,原子炉容器内の事象から格納容器内事象に至る一連の事象 を一貫して解析できるメカニスティックコードは,SAMPSON 以前には存在していなかったと 言われている[3-1]。

このような状況の下,当時の) 原子力発電技術機構 (NUPEC) では通商産業省(当時)の委託 を受け,我が国で実用化されている軽水型原子力発電プラントを対象として,通常運転時 からシビアアクシデントに至る一連の事象を解析できるソフトウェアを整備し,計算機シ ミュレーションによって事故時の安全裕度を実証することを目的とした事業を1993 年度よ り10年計画で発足させた。整備するソフトウェアは,軽水炉の安全裕度を評価できるもの とするため,できるだけ物理現象を精緻に記述した機構論的モデルで構築することとし, かつ運用・保守の効率を考慮してモジュール構成としている。このような特徴を考慮し, 整備するソフトウェアそのものを IMPACT(Integrated Modular Plant Analysis and Computing Technology)と称した。"IMPACT"は、コード開発のプロジェクト名にも使われ た。

SAMPSON (Severe Accident analysis code with Mechanistic, Parallelized Simulations Oriented towards Nuclear fields)は、軽水炉発電プラントの通常運転時から原子炉容器 内事象を経て格納容器内事象に至る間の一連の現象を対象として、事故の一貫解析を可能 とするために開発されたものであり、IMPACT プロジェクトで開発されたコードの中心と位 置づけられている。現在はエネ総工研が所有し保守されている。なお、USNRC のコードを等 価無償交換する取り決めが 1997 年 6 月に締結されている。

SAMPSON は、11 個の解析モジュールと、事象進展に応じて解析モジュール群の実行制御 を行う解析制御モジュールとで構成されている。また2つのオフラインモジュールとして、 水素混合解析モジュール(hyna)と水素燃焼挙動解析モジュール(ddoc)がある。解析モジ ュールのうち、原子炉容器内熱水力解析モジュールにはUSNRCのRELAP5を、格納容器内熱 水力解析モジュールにはUSNRCのCONTAINを利用し、1次系内FP挙動解析モジュールおよ び格納容器内 FP 挙動解析モジュールは、一括して NUPECで開発された冷却系内 FP 輸送解 析コード MACRES を改良して利用している。解析制御モジュール(ACM)は、事故シナリオに 応じた11種類の解析モジュールの動的な配置、実行制御、通信制御およびタイムステップ 制御を行う。

図 3-1 SAMPSON のモジュール

3.3 SAMPSON-SWG の活動概要

本研究専門委員会の設立直後の2011年11月にSAMPSON-SWG が立ち上がり,これまで,6 回開催した。まず,IMPACT プロジェクトに参画していた大坂大学・片岡教授から「SAMPSON の開発と物理モデルについて」と題した包括的な講義,および当時既に SAMPSON ユーザで あった㈱テプコシステムズから「SAMPSON の調査報告・インストール経験について」という ユーザ視点の発表を頂いた。開発元であるエネ総工研から委員に対するコード,入力,マ ニュアルの配布は 2011年12月より開始し,これまでに3度の修正バージョーンの配布が あった。なお,本研究専門委員会で配布される SAMPSON の入力データは,公開情報に基づ く「福島第一原子力発電所1または2,3号機相当」のものであり,エネ総工研が国からの 委託で進めている解析や OECD/NEA の BSAF (Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station)で用いられている入力データとは厳密には一 致しない。

SAMPSON コードが配布された機関は、東京大学、大阪大学、電気通信大学、早稲田大学、 北海道大学、東京工業大学、福井大学、日本原子力研究開発機構、原子力安全基盤機構、 電力中央研究所、東京電力、テプコシステムズ、東芝、日立製作所、日立 GE ニュークリア・ エナジー、三菱重工、三菱総研(順不同)である。ユーザ機関による検討状況は、定期的 に開かれる SAMPSON-SWG の会合で紹介され、開発元のエネ総工研を加えた活発な議論が交 わされてきた。

3.4 SAMPSON コードに関する検討状況

ここでは、本専門委員会発足後に各ユーザが発表した公開文献を基に、SAMPSON コードに 関する検討状況を簡単に紹介する。これらの公開文献は、付録 B を参照されたい。

3.4.1 In-vessel モデルの検討と福島第一原子力発電所事故の初期過程の解析

開発元のエネ総工研からは,福島第一原子力発電所事故を踏まえた SAMPSON コードの改 良計画[3-3]のほか,福島第一原子力発電所 1,2,3 号機の事故進展解析結果[3-4~25]が多 数公開されている。

1 号機では,地震発生から約 5 時間後に約 7[MPa]の炉圧が計測され,約 9 時間後に設計 圧力を大幅に超えるドライウェル圧力が計測され,12 時間後には炉圧が約 0.9MPa に減圧し ていることが計測されている。これらの事実は,遅くとも地震発生の約 9 時間後には原子 炉冷却系の圧力バウンダリが破損してドライウェルへの直接リークが生じていたことを強 く示唆している。原子炉圧力容器(RPV)の下部ヘッド破損が唯一のリークパスだと仮定し た初期の解析では,地震発生から約 14 時間後の RPV 下部ヘッド破損までは炉圧の低下やド ライウェル圧力の上昇が生じない結果となった[3-4]。東京電力が MAAP を用いて解析した 結果も,地震発生後約 15 時間での RPV 下部ヘッド破損というものであった[3-26]。そこで, 東京電力のその後の解析でも採用されたものと同様に,エネ総工研では,逃し安全弁(SRV) のガスケットからのリークと、炉内まで延びている線源領域検出器 (Source Range Monitor: SRM) /中間領域検出器 (Intermediate Range Monitor: IRM)のガイドチューブの損傷を仮 定した解析を実施し、計測データの傾向をある程度再現する結果が得られている [3-12, 15, 16, 19, 20, 22, 25]。また、現状では炉心構造物の約 67%が溶融し、約 572kg の水 素が RPV 内で発生したものと評価されている[3-25]。

2 号機では、原子炉格納容器からの除熱が喪失した状況で原子炉隔離時冷却系(RCIC)が 長時間稼働していたことから、サプレッションプール水温上昇による蒸気凝縮能力の低下 が起こり、結果としてドライウェル圧力が徐々に上昇したものと考えられている。SAMPSON による当初の解析では、このドライウェル圧力の上昇を実測値より過大評価していた[3-6]。 その後の解析では、津波によりトーラス室が浸水し、地震発生から約56時間でトーラス室 体積の30%まで海水で満たされたと仮定すると、約70時間までのドライウェル圧力の解析 結果が実測値をよく再現することが示された[3-23]。また、2号機ではRCIC制御用の直流 電源が喪失したため、炉内の水位をレベル2と8の間に保つようにRCICが起動/停止を繰 り返すことができなくなり、RCICの稼働中は炉内水位がレベル8を超えていたと考えられ ている。エネ総工研では、RCICの駆動タービンに二相流が流れこんだ際の効果を新たにモ デル化することで、事故初期段階の炉圧の測定値が概ね再現されている [3-13, 17, 19, 20, 23, 25]。また、現状では炉心構造物の約38%が溶融し、約930kgの水素が RPV内で発生したものと評価されている[3-25]。

3 号機では,運転員による高圧注水系(HPCI)の部分負荷運転に伴う炉圧の一時的な低下 が観測されており,それを再現するための部分負荷運転モデルがエネ総工研で提案されて いる[3-11,18,19,20,25]。また,サプレッションプールの温度成層化による蒸気の不完全 凝縮やサプレッションプールスプレイのモデルを追加することで,ドライウェル圧力の測 定値が概ね再現されている[3-15,18]。また,代替注水により実際に炉心に入った水量が RPV 下部ヘッド破損の有無に大きな影響を及ぼすことが示唆されている[3-24]。また,現状で は炉心構造物の約 40%が溶融し,約 880kg の水素が RPV 内で発生したものと評価されてい る[3-25]。

初期過程に関連するモデル改良の検討と 1 号機の事象進展解析は、東京大学でも実施さ れている[3-27~33]。RPV の減圧に関するものとして、SRM ガイド管や主蒸気配管のクリー プ破損モデルが検討されている。炉内の伝熱流動現象に関するものとして、燃料被覆管の クリープ破損、被覆管内面やチャンネルボックス、制御棒シース、制御棒被覆管の酸化モ デル、酸化反応が水蒸気を消費することによる下流域への影響、輻射伝熱による炉内温度 分布の平坦化、金属の酸化による熱伝導率の低下、B₄C とステンレスの相互作用による液化 温度の低下などが検討されている。

今後は、RPV 内外のデブリ分布の推定や、コア-コンクリート反応(MCCI)の状況、原子 炉格納容器の破損モードやタイミングなどの評価とそれに必要なモデル開発・改良などが 重要課題として挙げられる。2 号機については、RCIC タービンからの排気がサプレッショ ンプールの一箇所に流れ続けたことによるプール水の温度成層化の検討が課題として挙げ られている。

3.4.2 Ex-vessel モデルの検討

福島第一原子力発電所事故の解析としては,前節で紹介したように,現状は In-vessel について主に検討されている。Ex-vessel の諸現象は,In-vessel に比べて更に不確かさが 大きくなると考えられており,前述のとおり,デブリ分布の推定や,コア-コンクリート反応(MCCI)の状況,原子炉格納容器の破損モードやタイミングなどが重要課題として挙げられる。SAMPSON-SWG においては,Ex-vessel での不確かさ低減を目的としたモデル検討や 既往実験との比較,必要に応じて新たな小規模実験などが実施されている。

今後,福島第一原子力発電所 1~3 号機の廃炉作業を進める上で,格納容器内におけるデ ブリの分布状況に関する情報が必要であるが,これは,RPV からの溶融燃料の漏洩状況の影 響を受けると考えられる。例えば,液噴流の微粒化が顕著な場合には,液噴流はより広範 囲に分散するとともに,周囲気体との熱交換により固化が促進されたと考えられる。気体 中に噴出する液体噴流の流動特性は,流体力学分野における基本的な興味の対象の 1 つで あるが,特に噴出孔の口径が 1mm を超える場合,噴流の広がり特性や微粒化特性に関する 知見は,きわめて限られた状況にある。電気通信大学では,液体噴流の流動特性に特に強 い影響をもつ因子として,噴出口の形状と背圧が液体噴流の広がり特性及び微粒化特性に 及ぼす影響について,実験的な検討がなされている[3-34~37]。並行して,デブリの落下 断面積や最小流動厚さにより,ペデスタル床面上におけるデブリの広がり状況がどのよう に変化するのか,SAMPSON コードのデブリ広がり挙動モジュール (DSA) を用いて数値実験 的に検討されている[3-35,36]。

炉心溶融物(コリウム)の格納容器床における広がり挙動はMCCIの初期条件であるのみならず,BWRマークI格納容器のライナー健全性とも関係する重要テーマである。早稲田大学では、この挙動を非圧縮性連続体の相変化や大変形を経験式によらず機構論的に解析できる粒子法(MPS法)計算コードを用いて種々の条件で解析し、SAMPSONコードの当該モデルの検証が行われている[3-38~40]。これまでに、既往のFARO/26S、ECOKATS-VI及びTheofanous水実験がMPSコードでよく再現されている。このMPSコードとの比較を通じて、SAMPSONのDSAモジュールにおける高さ方向の計算格子の設定方法が検討されている。

また、㈱日立製作所においても、DSA モジュールによるデブリ拡がり予測精度向上を目的 とする解析モデルの高度化が検討されている[3-41, 42]。

3.5 まとめ

シビアアクシデントの事象進展評価における大きな不確かさを低減し,福島第一原子力 発電所でおきたシビアアクシデント現象(特にデブリの分布状況)の推定や今後のアクシ デントマネジメント策などの評価・改良に資するために,SAMPSON コードとその課題につい て調査・検討した。今後も様々なモデル改良や検証を継続していくことが必要である。

3.6 参考文献

- [3-1] 内藤正則,安藤泰正,氏田博士,IMPACT プロジェクトチーム"軽水炉発電プラントの事故シミュレーションシステム 'IMPACT'の開発",日本原子力学会誌,Vol. 41, No.3, pp.174-201 (1999).
- [3-2] H. Ujita, N. Satoh, M. Naitoh, M. Hidaka, N. Shirakawa, M. Yamaguchi, "Development of severe accident analysis code SAMPSON in IMPACT project", J. Nucl. Sci. Technol., Vol. 36, No. 11, pp.1076-1088 (1999).
- [3-3] M. Naitoh, H. Suzuki, H. Okada, "SEVERE ACCIDENT CODE DEVELOPMENT REFLECTING THE FUKUSHIMA DISASTER", Proc. 18th Pacific Basin Nuclear Conference (PBNC 2012), PBNC 2012-FA0102, BEXCO, Busan, Korea, March 18-23 (2012).
- [3-4] M. Naitoh, H. Suzuki, H. Okada, "FUNCTION OF ISOLATION CONDENSER OF FUKUSHIMA UNIT-1 NUCLEAR POWER PLANT", Proc. 20th International Conference on Nuclear Engineering collocated with the ASME 2012 Power Conference, ICONE20-POWER2012-55239, Anaheim, California, USA, July 30 - August 3 (2012).
- [3-5] M. Naitoh, H. Suzuki, H. Okada, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI NPP WITH SAMPSON CODE - (1) UNIT 1", Proc. Severe Accident Assessment and Management: Lessons Learned from Fukushima Dai-ichi, Paper 6005, San Diego California, November 11-15 (2012).
- [3-6] H. Suzuki, M. Naitoh, H. Okada, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI NPP WITH SAMPSON CODE - (2) UNIT 2", Proc. Severe Accident Assessment and Management: Lessons Learned from Fukushima Dai-ichi, Paper 6006, San Diego California, November 11-15 (2012).
- [3-7] M. Pellegrini, H. Suzuki, H. Mizouchi, M. Naitoh, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI NPP WITH SAMPSON CODE - (3) UNIT 3", Proc. Severe Accident Assessment and Management: Lessons Learned from Fukushima Dai-ichi, Paper 6111, San Diego California, November 11-15 (2012).
- [3-8] M. Naitoh, H. Suzuki, K. Hirakawa, H. Okada, M. Pellegrini, "IMPROVEMENT PLAN OF SAMPSON CODE TO ANALYZE ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI NPP UNITS 1-3", Proc. 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS8), N8P1033, Beppu, Japan, December 9-12 (2012).
- [3-9] K. Hirakawa, H. Suzuki, H. Mizouchi, M. Naitoh, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAI-ICHI UNIT 1 WITH SAMPSON SEVERE ACCIDENT CODE", Proc. 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety

(NTHAS8), N8P1136, Beppu, Japan, December 9-12 (2012).

- [3-10] H. Okada, A. Takahashi, H. Suzuki, S. Uchida, M. Naitoh, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI with SAMPSON CODE - (2) Unit 2", Proc. 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS8), N8P1043, Beppu, Japan, December 9-12 (2012).
- [3-11] M. Pellegrini, H. Suzuki, H. Mizouchi, M. Naitoh, "Analysis of Fukushima Daiichi Nuclear Power Plant by SAMPSON Severe Accident Code - Unit 3", Proc. 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS8), N8P1137, Beppu, Japan, December 9-12 (2012).
- [3-12] 平川香林,内藤正則,鈴木洋明,東京電力福島第一原子発所炉内状況把握の解析・ 評価(2)SAMPSONコードによる1号機の解析,日本原子力学会2013年春の年会,016, 近畿大学,2013年9月26日~28日.
- [3-13] 高橋淳郎,鈴木洋明,溝内秀男,内藤正則,東京電力福島第一原子発所炉内状況把握の解析・評価(3)SAMPSON コードによる2号機の解析,日本原子力学会2013年春の年会,017,近畿大学,2013年3月26日~28日.
- [3-14] M. Pellegrini, H. Mizouchi, H. Suzuki, M. Naitoh, "Assessment of Core Status of TEPCO's Fukushima Daiichi Nuclear Power Plants (4) Molten Core Relocation Analysis in Unit 3", 日本原子力学会 2013 年春の年会, 018, 近畿大学, 2013 年 9月 26日~28日.
- [3-15] M. Naitoh, H. Suzuki, H. Okada, H. Mizouchi, K. Hirakawa, A. Takahashi, M. Pellegrini, "STATE OF THE ART SAMPSON ANALYSIS AND ITS FUTURE IMPROVEMENTS FOR CALCULATIONS OF THE FUKUSHIMA DAIICHI NPP ACCIDENT", Proc. 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-15), NURETH15-601, Pisa, Italy, May 12-17 (2013).
- [3-16] K. Hirakawa, M. Naitoh, H. Suzuki, H. Okada, H. Mizouchi, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI WITH SAMPSON CODE - (1) UNIT 1", Proc. 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-15), NURETH15-033, Pisa, Italy, May 12-17 (2013).
- [3-17] H. Okada, A. Takahashi, H. Suzuki, S. Uchida, M. Naitoh, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI WITH SAMPSON CODE - (2) UNIT 2", Proc. 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-15), NURETH15-075, Pisa, Italy, May 12-17 (2013).
- [3-18] M. Pellegrini, H. Suzuki, H. Mizouchi, M. Naitoh, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI WITH SAMPSON CODE - (3) UNIT 3", Proc. 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-15), NURETH15-234, Pisa, Italy, May 12-17 (2013).

- [3-19] M. Naitoh, M. Pellegrini, H. Mizouchi, H. Suzuki, H. Okada, "ANALYSIS OF ACCIDENT PROGRESSION OF FUKUSHIMA DAIICHI NPPS WITH SAMPSON CODE", Proc. 21st International Conference on Nuclear Engineering, ICONE21-16805, Chengdu, China, July 29 - August 2 (2013).
- [3-20] M. Naitoh, S. Uchida, H. Suzuki and H. Okada, "Nuclear Accident in Fukushima Daiichi NPP and Its Influence on Nuclear Energy in Japan", Proc. 16th International Conference on the Properties of Water and Steam, ICPWS16, Paper 027, London, UK, September 1-5 (2013).
- [3-21] 溝内秀男,鈴木洋明,内藤正則,平川香林,高橋淳郎,マルコ ペリグリニ,鈴木博之,森 田能弘,東京電力福島第一原子発所炉内状況把握の解析・評価(9) SAMPSON コード における解析モデルの高度化,日本原子力学会 2013 年秋の大会,K36,八戸工業大 学,2013 年 9 月 3 日~5 日.
- [3-22] 平川香林,内藤正則,鈴木洋明,溝内秀男,東京電力福島第一原子発所炉内状況把 握の解析・評価(11) SAMPSON コードによる福島第一原子力発電所1号機の事故進 展解析,日本原子力学会2013年秋の大会,K38,八戸工業大学,2013年9月3日~ 5日.
- [3-23] 高橋淳郎,鈴木洋明,溝内秀男,内藤正則,東京電力福島第一原子発所炉内状況把握の解析・評価(12) SAMPSON コードによる福島第一原子力発電所2号機の事故進展解析,日本原子力学会2013年秋の大会,K39,八戸工業大学,2013年9月3日~ 5日.
- [3-24] マルコ ペリグリニ, 溝内秀男, 鈴木洋明, 内藤正則, 東京電力福島第一原子発所炉内状況 把握の解析・評価(13) SAMPSON コードによる福島第一原子力発電所3号機の事故 進展解析, 日本原子力学会2013年秋の大会, K40, 八戸工業大学, 2013年9月3日 ~5日.
- [3-25] M. Naitoh, H. Suzuki, H. Mizouchi, K. Hirakawa, A. Takahashi, M. Pellegrini, and H. Okada, "Analysis of the Fukushima Daiichi Nuclear Accident by Severe Accident Analysis Code SAMPSON", 6th European Review meeting on Severe Accident Research (ERMSAR-2013), Paper 7.2, Avignon, France, October, 2-4 (2013).
- [3-26] 東京電力株式会社,福島原子力事故調査報告書(中間報告書),平成23年12月.
- [3-27] M. Liu, Y. Ishiwatari, K. Okamoto, "Estimation of the depressurization process of Fukushima Daiichi NPP Unit 1", Proc. 2012 Annual Meeting of the Japanese Society of Multiphase Flow, A211, Kashiwa, Japan, August 9-11 (2012).
- [3-28] M. Liu, Y. Ishiwatari, K. Okamoto, "Estimation of the depressurization process of Fukushima Daiichi NPP Unit 1 with SAMPSON", International Workshop on Nuclear Safety and Severe Accident (NUSSA), TS-62, Beijing, China, September

7-8 (2012).

- [3-29] M. Liu, Y. Ishiwatari, K. Okamoto, "Estimation of the unintended depressurization process of Fukushima Dai-ichi NPP Unit 1 with SAMPSON", Proc. 2012 fall meeting of AESJ, M17, Higashi-Hiroshima, Japan, September 19-21 (2012).
- [3-30] M. Liu, Y. Ishiwatari, K. Okamoto, "Estimation of the depressurization process of Fukushima Daiichi NPP Unit 1 with SAMPSON", Proc. International Meeting on Severe Accident Assessment and Management: Lessons Learned from Fukushima Dai-ichi, Paper 5979, San Diego, USA, November 11-15 (2012).
- [3-31] M. Liu, Y. Ishiwatari, K. Okamoto, "Improvement of the SAMPSON Code for BWR Severe Accident Analysis", Proc. 21th Int. Conf. On. Nucl. Eng. (ICONE-21), ICONE21-16719, Chengdu, China, July 29 - August 2 (2013).
- [3-32] M. Liu, Y. Ishiwatari, K. Okamoto, "Improvement of the SAMPSON code for Fukushima accident analysis", Proc. 2013 fall meeting of AESJ, K34, Hachinohe, Japan, September 3-5 (2013).
- [3-33] M. Liu, Y. Ishiwatari, K. Okamoto, "Estimation of the Depressurization Process of Fukushima Daiichi NPP Unit 1", Japanese Journal of Multiphase Flow, Vol. 27, No. 3, pp. 298-305 (2013).
- [3-34] 大川富雄 佐藤慎吾 渡邊憲司,溶融炉心の噴出および広がり特性に関する研究,日本原子力学会 2013 年春の年会,N22,近畿大学,2013 年 3 月 26 日~28 日.
- [3-35] 大川富雄 佐藤慎吾 渡邊憲司, デブリの噴出および広がり挙動に関する検討, 第 18 回動力・エネルギー技術シンポジウム, E121, 千葉大学, 2013 年 6 月 20 日~21 日.
- [3-36] T. Okawa, S. Sato, K. Watanabe, "Improvement of the SAMPSON Code for BWR Severe Accident Analysis", Proc. 21th Int. Conf. On. Nucl. Eng. (ICONE-21), ICONE21-16066 (Presentation only), Chengdu, China, July 29 - August 2 (2013).
- [3-37] 大川富雄,佐藤慎吾,渡邊憲司,気中液噴流の流動特性に関する研究,日本機械学 会 2013 年度年次大会講演論文集, S083024 (2013).
- [3-38] 松浦敬史, 岡芳明, MPS 法による溶融物炉外流動固化挙動解析, 計算工学講演会論 文集, Vol. 18, F-12-3 (2013).
- [3-39] 松浦敬史,鎌田崇義,鈴木洋明,岡芳明,MPS 法による溶融物挙動解析;(1)床面挙動解析と SAMPSON/DSA 解析検討,H09,八戸工業大学,2013年9月3日~5日.
- [3-40] T. Matsuura, Y. Oka, "MPS simulation of spreading behavior of molten materials", Proc. III International Conference on Particle-based Methods -Fundamentals and Applications (PARTICLES), pp. 875-886, Stuttgart, Germany, September 18-19 (2013).
- [3-41] 日高政隆,石井佳彦,酒井健,藤井正,東京電力福島第一原子発所炉内状況把握の

解析・評価(10) SAMPSON コードにおけるデブリ拡がりモデルの高度化,日本原子 力学会 2013 年秋の大会,K37,八戸工業大学,2013 年 9 月 3 日~5 日.

[3-42] 中島一雄,石田直行,日高政隆,酒井健,藤井正,SAMPSON コードによる ABWR 格 納容器ペデスタル上の炉心デブリの3次元拡がり評価,日本原子力学会2013年秋 の大会,H12,八戸工業大学,2013年9月3日~5日.

4. 結言

福島第一原子力発電所でおきたシビアアクシデント現象の把握、さらには事故で放出さ れたソースタームを評価するためには、解析コードによるシミュレーションが欠かせない。 そのシミュレーションの評価精度を向上するため、事象進展及びソースターム評価の2つ の観点から PIRT を実施し、課題の抽出を行った。また、シビアアクシデントの事象進展評 価における大きな不確定性を低減し、福島第一原子力発電所でおきたシビアアクシデント 現象(特にデブリの分布状況)の推定や今後のアクシデントマネジメント策などの評価・ 改良に資するために、SAMPSON コードとその課題について調査・検討した。

今後、本 PIRT 結果を SAMPSON コード解析に反映するとともに、SAMPSON コード等の事象 進展解析結果を PIRT に反映していくことが必要である。また、本 PIRT 結果を踏まえて、 実験も含めて解析コードの高度化のための研究計画が具体化されるべきである。さらに、 本 PIRT も定期的に見直し、より充実していく事が必要である。SAMPSON コードについては、 今後も様々なモデル改良や検証を継続していくことが必要である。