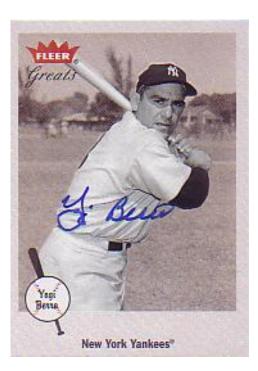


GLOBAL PROSPECTS FOR NUCLEAR POWER

Gail H. Marcus Deputy Director-General


Foreign Professional Societies Coordinating Committee Atomic Energy Society of Japan

> *Tokyo, Japan December 8, 2005*

As a great American philosopher once said:

"It is hard to make predictions, especially about the future"

Yogi Berra

WHAT IS NEA?

- □ Founded in 1958 as ENEA (European).
- Became NEA in the 1970s when Japan, Australia, the U.S. and Canada joined.
- □ A semi-autonomous agency of the OECD.
- Present membership: 28 OECD member countries.
- □ Size:
 - \sim 80 staff members;
 - Budget of 12 million euros;
 - Secretariat for projects totalling about 20 million euros/year.

The NEA Mission

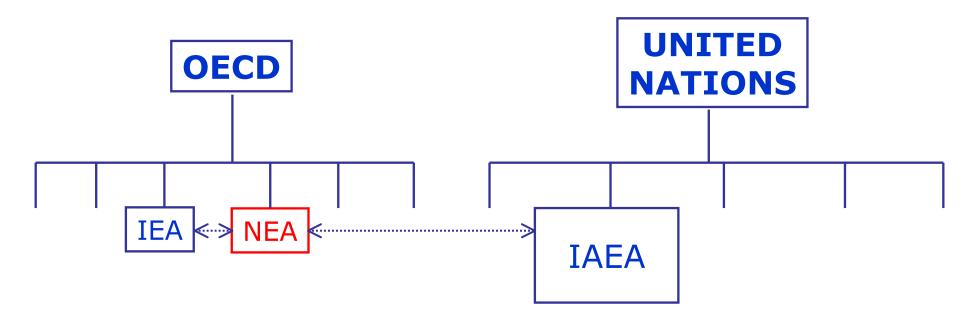
- ↘ To assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes.
- ↘ To provide authoritative assessments and to forge common understandings on key issues, as input to government decisions on nuclear energy policy, and to broader OECD policy analyses in areas such as energy and sustainable development.

- Australia
- Austria
- Belgium
- Canada
- Czech Republic
- Denmark
- Finland
- France
- Germany
- Greece

- Hungary
- Iceland
- Ireland
- Italy
- Japan
- Korea
- Luxembourg
- Mexico
- Netherlands
- Norway


The NEA Membership

- Portugal
- Slovak Republic
- Spain
- Sweden
- Switzerland
- Turkey
- United Kingdom
- United States

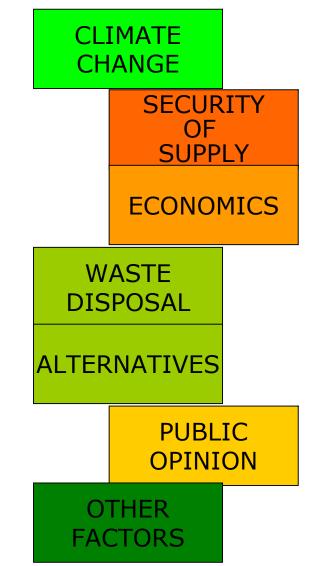

NEA Committees

NEA & RELATED INTERNATIONAL ORGANIZATIONS

OECD: Organization for Economic Co-operation and Development
IEA: International Energy Agency
NEA: Nuclear Energy Agency
IAEA: International Atomic Energy Agency

Three Mega-factors

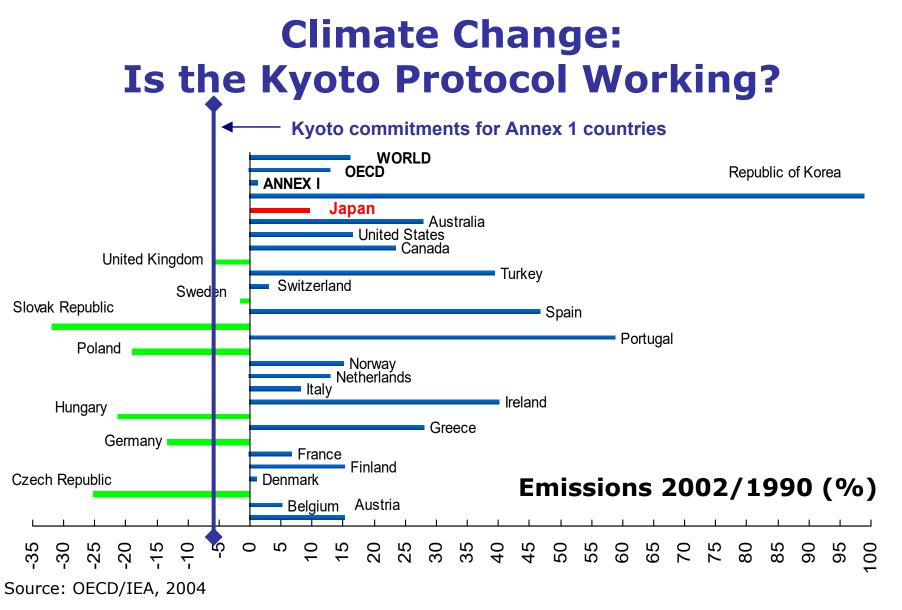
Reliability of Supply


Growing Demand in Developing Countries

HOW DOES NUCLEAR STACK UP?

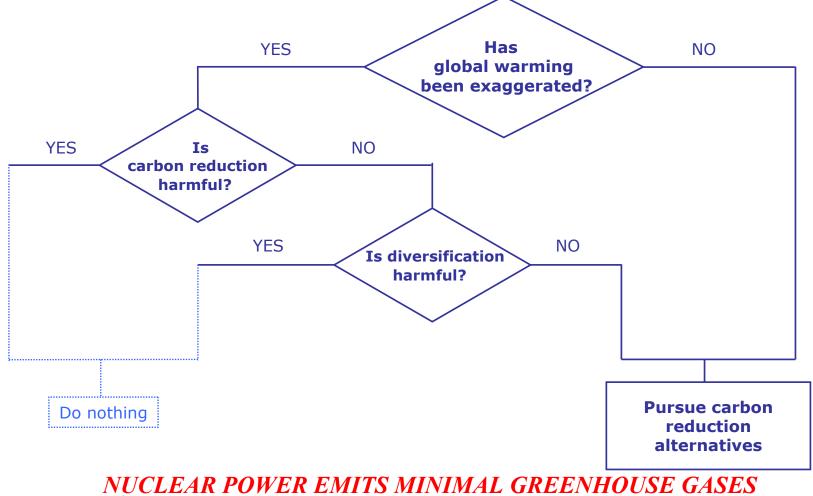
Nuclear Power Use Today

	OECD Countries	World	Japan
# of Plants	359	440	53
# GWe	304	362	48
% of Electricity Supply	~23%	~16%	~35
# of Countries	17	30	



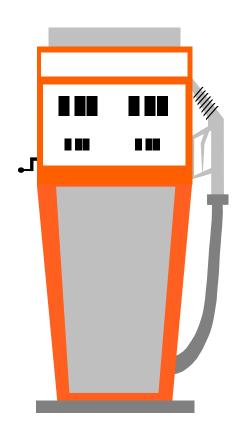
Nuclear Power Use Today

	OECD Countries	World	Japan
# of Plants	359	440	54
# GWe	304	362	48
% of Electricity Supply	~23%	~16%	~35
# of Countries	17	30	—



DOES IT MATTER (FOR NUCLEAR DEVELOPMENT) IF GLOBAL WARMING IS REAL?

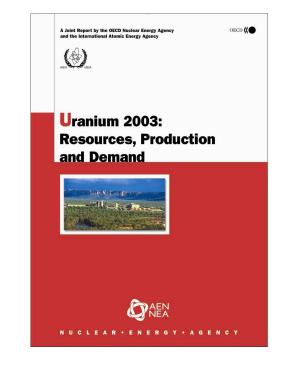
Tokyo, Japan, December 8, 2005



Security of Supply: *Issues*

* Potential short-term disruptions of fossil fuels:

- Political (disruption and/or cost increases)
- ➡ Terrorism
- Natural disasters
- * Potential mid- and long-term issues
 - Growing competition
 - Diminishing resources/increasing cost of resources



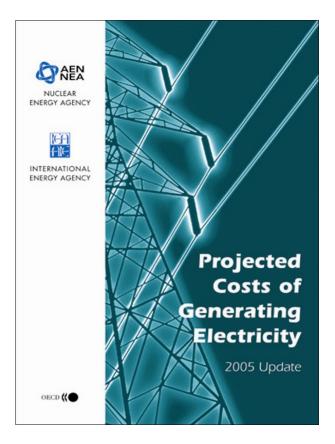
Security of Supply: *The Role of Nuclear Power*

- Nuclear energy is a domestic source which alleviates dependence on imported fossil fuels
- ✤ Uranium resources are large
- Uranium producers are widely distributed
- Substantial amounts of uranium are in stable countries
- Technology can increase the lifetime of uranium resources

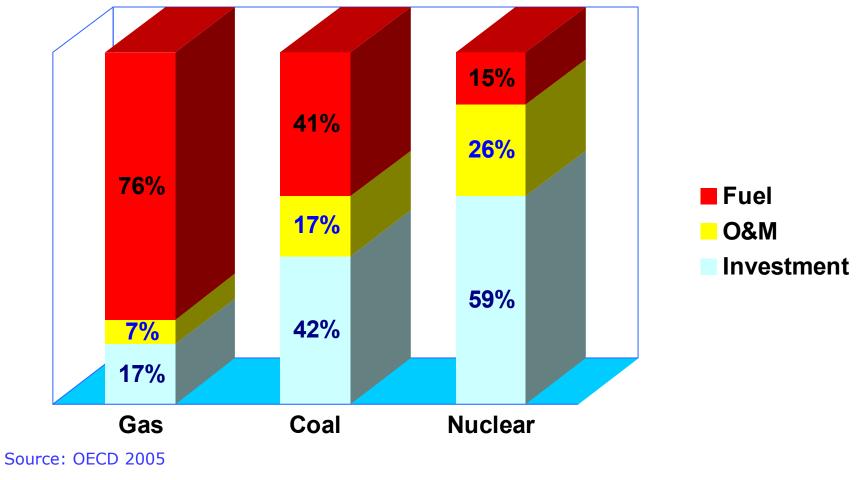
Nuclear Power Can Improve Security of Supply

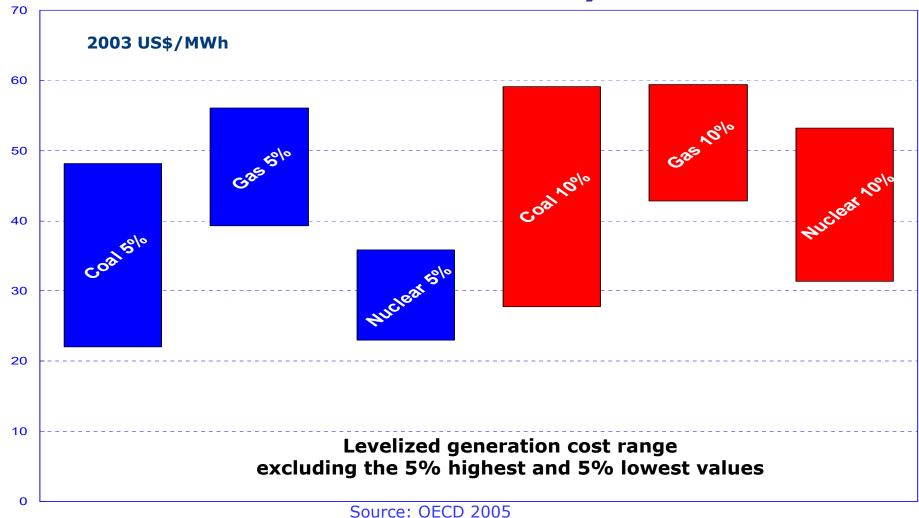
Effect of technology on U resource longevity

[Only conventional resources are taken into account]


Reactor/Fuel cycle	Years of electricity generation at 2003 level (~2 600 TWh/year)		
	Known U resources 4 589 000 t	Conv. U resources 14 383 000 t	
LWR once through	65	210	
LWR with recycling	76	250	
LWR & Fast Reactors with recycling	98	315	
Pure Fast Reactors with recycling	1 950	6 300	

ECONOMICS OF NUCLEAR POWER: *Framework of the 2005 OECD study*


- 130 power plants considered
 13 NPPs, 27 Coal Plants, 23 Gas Plants
- Commissioning by 2010-2015
- Data from 21 countries
- Levelized generation costs at 5 & 10% discount rate


Generation cost structure 2005 OECD study

Projected costs of generating electricity 2005 OECD study

Tokyo, Japan, December 8, 2005

Radioactive Waste Disposal: *What is the Issue?*

Not a technical issue

- Volumes are small, easy to manage and dispose of safely
- Experts are confident that geological disposal is an appropriate safe solution
- Societal issue
 - > Technical confidence alone is not enough
 - Acceptance by the broader public needs to be gained

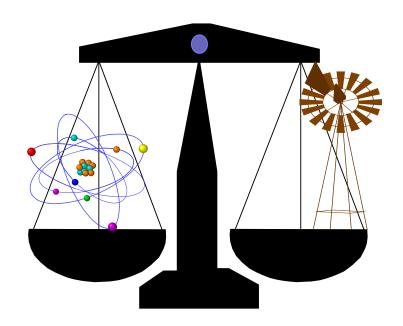
Radioactive Waste Disposal: *Actions and Options*

Moving Forward:

- > Olkiluoto in Finland
- US Government decision on Yucca Mountain
- Others are following (Sweden, France, ...)
- Other possibilities:
 - Reprocessing to reduce volume and halflife
 - > Interim storage

Public Opinion: Views of Leading Environmentalists Changing

> Announced Support for Nuclear Power


- → James Lovelock (Creater of Gaia Hypothesis)
- Patrick Moore (Greenpeace co-founder)
- Stewart Brand (Whole Earth Catalog founder)
- **Rev. Hugh Montefiore** (former Board Member, Friends of the Earth)
- Jared Diamond (Board Member, World Wildlife Federation)
- > Maybe...
 - Jonathan Lash (President, World Resources Institute)
 - Paul Gilding (former Greenpeace Executive Director)
 - Fred Krupp (Executive Director Environmental Defense)
 - James Speth (Yale School of Forestry and Environmental Studies)

Alternatives: Are there better options?

- ⇒ Oil + Gas
- ⇔ Coal
- ⇒ Hydroelectric
- ⇒ Renewables
- ⇒ Conservation
- ⇒ Fusion

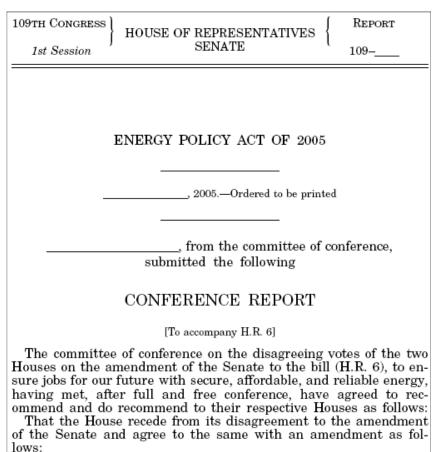
Other Factors:

Nuclear Power Development in 2005

* In OECD

- > **Canada:** Bruce 3 and Pickering 1, PHWRs, re-connected
- Finland: Olkiluoto 3, PWR/EPR, under construction
- > **France:** Flamanville 3, PWR/EPR, decision to construct
- Japan: Hamaoka 5 and Shika 2, ABWRs, connected; Tomari 3, PWR, initiation of construction
- Republic of Korea: Ulchin 6, PWR, connected
- > United States: Energy Bill

* Outside OECD


- China: Quinshan 2-2 under construction; ~ 30 units planned by the government
- > India: 8 units under construction; 8 more announced
- > **Russia:** 4 units under construction
- > Chile, Indonesia, Vietnam...

Other Factors: US Energy Bill

- ⇒ Covers all energy technologies
- ⇒ Builds on momentum of last several years (in nuclear)
- Provides financial incentives for new construction
- ⇒ Authorizes strong R&D program
- ⇒ Appropriations are needed to implement most provisions

In lieu of the matter proposed to be inserted by the Senate

Major Nuclear Provisions of U.S. Energy Bill

- Financial Incentives for New Construction
 - Production tax credit (first 6000 MW of new capacity)
 - Loan guarantees for innovative technologies
 - "Standby Support" for certain construction and startup delays (first 6 reactors)
- Research and Development
 - Generation IV designs
 - Next Generation Nuclear-Hydrogen Co-generation Plant
 - ► Advanced Fuel Cycle Initiative
- Other Provisions

Recent Announcements in the U.S.

UTILITY OR CONSORTIUM	TECHNOLOGY (NUMBER)	SITE	EXPECTED DATE OF LICENCE APPLICATION
NUSTART	AP-1000 (2) ESBWR	BELLAFONTE GRAND GULF	LATE 2007-EARLY 2008
DOMINION	ESBWR	NORTH ANNA	2007
DUKE	AP-1000 (2)	TBD	LATE 2007-EARLY 2008
PROGRESS ENERGY	TBD (4)	TB2 (2 sites)	LATE 2007
CONSTELLATION	EPR	TBD	MID-2008
SOUTHERN NUCLEAR	TBD	VOGTLE	MARCH 2008
ENTERGY	ESBWR	RIVER BEND	"IN PARALLEL WITH NUSTART"

Other factors: Generation IV International Forum (GIF)

To foster collaborative R&D aiming at developing future generation nuclear energy systems

- 8 common goals
- sustainability
- economics
- safety and reliability
- proliferation resistance and physical protection

6 systems selected for R&D

NEA is in charge of Technical Secretariat

Tokyo, Japan, December 8, 2005

CONCLUSIONS

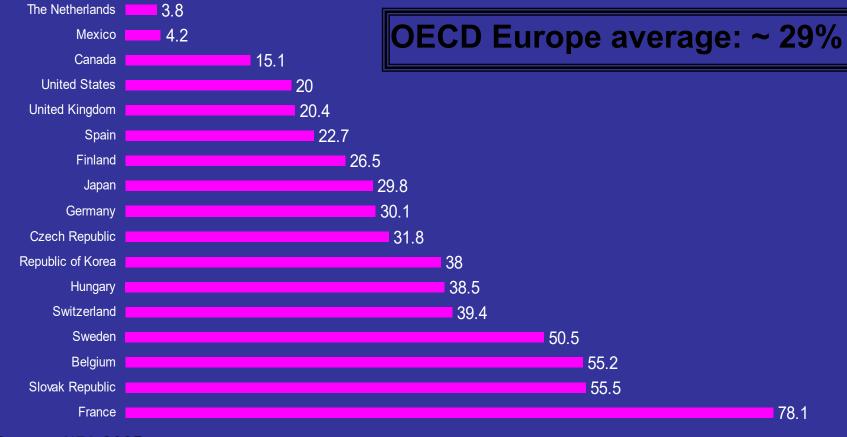
- Concerns about global warming and security of supply are creating renewed interest in nuclear power
- No other energy alternative has a clear advantage over nuclear power
- There have recently been a number of significant nuclear developments around the world
- There are many factors, both positive and negative, which can affect the future of nuclear power

IN CONCLUSION:

"It ain't over till it's over"

Yogi Berra

BACKUP


Evolution of nuclear energy systems

Today's GEN	GEN III+	GEN IV
BWR	ABWR ESBWR)
PWR/N4	EPR AP1000	
CANDU	Adv. CANDU	J
AGR	$\longrightarrow \begin{cases} GT-MHR \\ PBMR \end{cases}$	$ \} \longrightarrow \begin{array}{c} VHTR \\ GFR \end{array} $
LMFBR		SFR LFR
		MS R
Electricity/Open Cy	cle Electricity/Open Cycle	Electricity-Hydrogen / Closed Cycle

Nuclear Share (%) in Electricity Generation - OECD Countries 2004

Source: NEA 2005