2021年秋の大会:オンライン開催 新型炉部会セッション

(6) 国内燃料サイクル柔軟性拡大へ寄与する 軽水冷却高速炉

2021年9月10日 日立G E ニュークリア・エナジー株式会社 日野 哲士

All Rights Reserved. Copyright © 2021, Hitachi-GE Nuclear Energy, Ltd.

- 1. はじめに
- 2. RBWRの概要
- 3. 適用シナリオ
- 4. 開発項目
- 5. まとめ

- 日立はBWRプラントメーカとして、冷却水(中性子減速材)が 沸騰するBWRの特徴を活かした軽水冷却高速炉RBWRの 開発を進めてきた
- 燃料サイクルの短中期から長期の課題に対応すべく RBWRの様々なバリエーションを提案

RBWR: Resource-renewable Boiling Water Reactor

本発表での報告内容

 バリエーションの中で、高速炉サイクルへの本格移行までに 起こりうる課題に対応すべく開発を進める、 既設炉バックフィットタイプのRBWRについて報告

- 1. はじめに
- 2. RBWRの概要
- 3. 適用シナリオ
- 4. 開発項目
- 5. まとめ

● 稠密燃料と冷却水沸騰により水対燃料比を減少、中性子を高速化。 炉心以外は現行BWR技術を適用

● プルサーマルの高度化として四角格子RBWRを導入

2-3. 四角格子RBWR

既設炉にバックフィットするため現行BWRと同じチャンネルボックス
 現行燃料からの移行性を重視した長尺燃料に開発を注力

- 1. はじめに
- 2. RBWRの概要
- 3. 適用シナリオ
- 4. 開発項目
- 5. まとめ

▶ 高速炉サイクルへの本格移行まで、現行軽水炉での対応を強化

3-2. ①使用済燃料蓄積量の低減

- BWR全体での使用済ウラン+
 MOX燃料の蓄積量増加を抑制
- 使用済MOX燃料の
 発生体数を1/3以下に低減

* 安藤良平他、使用済軽水炉燃料の核種組成評価、JAERI-Research 99-004 (1999)に基づく

3-3. ②使用済MOX燃料の再利用容易化

[1] 安藤良平他、使用済軽水炉燃料の核種組成評価、JAERI-Research 99-004 (1999)に基づく [2] 高速増殖炉サイクルの実用化戦略調査研究 フェーズII技術検討書(2006)

- 1. はじめに
- 2. RBWRの概要
- 3. 適用シナリオ
- 4. 開発項目
- 5. まとめ

4-1. 四角格子RBWRの主な開発項目

- нітасні 🛞
- 現行BWRと異なる中性子スペクトル・熱水力条件に対する評価手法適用性確認
 実炉照射実績範囲を超える富化度・燃焼度での被覆管・ペレット適用性確認

	四角格子(長尺)
バンドル平均 Pu含有率(wt%)	$\sim \! 13^{a}$
ペレット最高 Pu含有率(wt%)	18ª
バンドル平均 MA含有率(wt%)	_a,b
取出平均燃焼度 (GWd/t)	55
ノード最高燃焼度 (GWd/t)	~90

Pu含有率と燃焼度

 ・分離済みPu利用での設計例

 ^{b 241}Puの崩壊で生成されるもの除く

* W. LIU, et al., J. Nucl. Sci. Technol., Vol. 44, pp. 558-571 (2007)
 M. KURETA, et al., JAEA-Data/Code 2006-007 (2006)
 B.W. LETOURNEAU, et al., WAPD-TM-1013 (1975)

4-2. 核計算手法の適用性

 RBWRの炉心非均質性、現行炉との中性子スペクトルの違いが 核計算手法へおよぼす影響をベンチマーク計算で評価中

4-3. 熱水力計算手法の適用性

● 評価技術の高度化と要素試験による検証を実施中

- 1. はじめに
- 2. RBWRの概要
- 3. 適用シナリオ
- 4. 開発項目と計画
- 5. まとめ

- ・燃料サイクルの短期から長期のさまざまな課題に対応するため、 BWRポテンシャルを最大限活用する軽水冷却高速炉RBWR のバリエーションを検討してきた。
- プルトニウム利用の促進、使用済MOX燃料の削減、
 高速炉サイクルへの移行時の負担軽減により、
 国内燃料サイクルの柔軟性拡大に寄与する、
 既設炉バックフィットタイプのRBWRに注力して開発を進める。

